The aerobic, haloalkaliphilic archaeon Natronomonas pharaonis is able to survive in salt-saturated lakes of pH 11. According to genome analysis, the theoretical proteome consists of 2843 proteins. To reach further conclusions about its cellular physiology, the cytosolic protein inventory of Nmn. pharaonis has been analyzed using MS/MS on an ESI-Q-TOF mass spectrometer coupled on-line with a nanoLC system. The efficiency of this shotgun approach is illustrated by the identification of 929 proteins of which 886 are soluble proteins representing 41% of the cytosolic proteome. Cell lysis under denaturing conditions in water with subsequent separation by SDS-PAGE prior to nanoLC-MS/MS resulted in identification of 700 proteins. The same number (but a different subset) of proteins was identified upon cell lysis under native conditions followed by size fractionation (retaining protein complexes) prior to SDS-PAGE. Additional size fractionation reduced sample complexity and increased identification reliability. The set of identified proteins covers about 60% of the cytosolic proteins involved in metabolism and genetic information processing. Many of the identified proteins illustrate the high genetic variability among the halophilic archaea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr060352q | DOI Listing |
Biochemistry
November 2024
Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
Biophys Chem
December 2024
Institute for Protein Research, Osaka University, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan. Electronic address:
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl-bound and -free states under near-physiological transmembrane condition.
View Article and Find Full Text PDFJ Biol Chem
October 2024
The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan. Electronic address:
Microbial rhodopsins are photoreceptive membrane proteins found in microorganisms with an all-trans-retinal chromophore. The function of many microbial rhodopsins is determined by three residues in the third transmembrane helix called motif residues. Here, we report a group of microbial rhodopsins with a novel Thr-Thr-Gly (TTG) motif.
View Article and Find Full Text PDFJ Biol Chem
September 2024
Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan. Electronic address:
Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
August 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control, noninvasiveness, and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore, optogenetic techniques can provide new insights into oral biological processes at different levels, ranging from the subcellular and cellular levels to neural circuits and behavioral models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!