The sulfonation reagent, a succinimidyl ester of 3-sulfobenzoic acid, has been synthesized for effective peptide sequencing. It is capable of incorporating an additional mobile proton into the peptide backbone, thus, facilitating efficient collision-induced dissociation. This reagent is easily and inexpensively prepared in short time. Tandem mass spectra of the guanidinated and reagent-sulfonated peptides consist mainly of the y-ion series with higher intensities than those observed for solely guanidinated peptides. These enhanced tandem MS attributes significantly improved MASCOT total-ion scores, thus, allowing more confident peptide sequencing. This derivatization was also very effective for the analysis of tryptic digest of human blood serum proteins separated by two-dimensional gel electrophoresis. When used in LC-MALDI/MS/MS format, this type of derivatization does not adversely affect chromatographic efficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr0602747DOI Listing

Publication Analysis

Top Keywords

collision-induced dissociation
8
3-sulfobenzoic acid
8
succinimidyl ester
8
peptide sequencing
8
improved collision-induced
4
dissociation analysis
4
analysis peptides
4
peptides matrix-assisted
4
matrix-assisted laser
4
laser desorption/ionization
4

Similar Publications

Potential energy curves (PECs) for the spin-free (ΛS) and spin-orbit (Ω) states associated with the four lowest-lying dissociation channels of Na2 and K2 were calculated at the SA-CASSCF/SO-CASPT2/aug-cc-pwCVQZ-DK level. The PECs of Na2 were consistent with the experimental data and with the FS-CCSD (2,0) calculations, reproducing the double-well and the "shelf" character for some of the potentials of the excited states. For K2, the PECs behaved in a similar way and the spectroscopic parameters for the ground and the excited states are in good agreement with the available experimental values.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) and closely related compounds with varying isoprenoid tail lengths (CoQ, = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ radical anion ([M], / 862.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.

View Article and Find Full Text PDF

Molecular glues (MGs) and proteolysis-targeting chimeras (PROTACs) are used to modulate protein-protein interactions (PPIs), via induced proximity between compounds that have little or no affinity for each other naturally. They promote either reversible inhibition or selective degradation of a target protein, including ones deemed undruggable by traditional therapeutics. Though native MS (nMS) is capable of analyzing multiprotein complexes, the behavior of these artificially induced compounds in the gas phase is still not fully understood, and the number of publications over the past few years is still rather limited.

View Article and Find Full Text PDF

In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!