Decrease in extracellular collagen crosslinking after NMR magnetic field application in skin fibroblasts.

Med Biol Eng Comput

Department of Biomedical Engineering, Laboratory of Cell Biophysics, Aachen University of Applied Sciences, Ginsterweg 1, 52428, Juelich, Germany.

Published: January 2007

Although biological effects of electromagnetic fields were investigated intensively, there is still no agreement on the significance of their effects. The underlying mechanisms and therapeutic importance are still mostly unknown too. In this study, primary cultures of human dermal fibroblasts were exposed to magnetic field at nuclear magnetic resonance (NMR) conditions for in total 5 days and 4 h/day. Among the investigated parameters were: cell proliferation rate, cell morphology, total protein concentration as well as content of skin-specific collagen types I, III, IV. NMR exposure induced distinct changes both in cellular and extracellular components. The extracellular matrix (ECM) of NMR-exposed cells had less cross-linked collagen. In particular, the increase of collagen of the soluble fraction was at 17.2 +/- 2.9% for type I, 27.0 +/- 1.86% for type III, 17.3 +/- 1.46% for type IV (N = 6). In the absence of resonance frequency, the effects of magnetic field on ECM were less profound.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-006-0144-zDOI Listing

Publication Analysis

Top Keywords

magnetic field
12
decrease extracellular
4
collagen
4
extracellular collagen
4
collagen crosslinking
4
crosslinking nmr
4
magnetic
4
nmr magnetic
4
field application
4
application skin
4

Similar Publications

The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates.

View Article and Find Full Text PDF

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

EEG microstate analysis and machine learning classification in patients with obsessive-compulsive disorder.

J Psychiatr Res

January 2025

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. Electronic address:

Background: Microstate characterization of electroencephalogram (EEG) is a data-driven approach to explore the functional changes and interrelationships of multiple brain networks on a millisecond scale. This study aimed to explore the pathological changes of whole-brain functional networks in patients with obsessive-compulsive disorders (OCD) through microstate analysis and further to explore its potential value as an auxiliary diagnostic index.

Methods: Forty-eight OCD patients (33 with more than moderate anxiety symptoms, 15 with mild anxiety symptoms) and 52 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Radiography is a field of medicine inherently intertwined with technology. The dependency on technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable in US and MRI, advancements in technology have made it possible in CT, with ongoing studies aimed at further optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!