Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to explore the capability of spectroscopy in the visible (Vis) and short wavelength near-infrared (NIR) regions for the non-destructive measurement of wine composition in intact bottles. In this study we analysed a wide range of commercial wines obtained in Australia in different types of bottles (e.g. colours, diameters and heights), including different wine styles and varieties. Wine bottles were scanned in the Vis-NIR region (600-1,100 nm) in a monochromator instrument in transflectance mode. Principal component analysis (PCA) and partial least-squares (PLS) regression were used to interpret the spectra and develop calibrations for wine composition. Due to the relatively small number of samples available full cross-validation (leave-one-out) was used as validation. The coefficient of correlation in calibration [Formula: see text] and the standard error of cross-validation (SECV) were 0.67 (SECV: 0.48%), 0.83 (SECV: 4.01 mg L-1), 0.70 (SECV: 28.6 mg L-1) and 0.50 (SECV: 0.15) for alcohol content, total SO2, free SO2 and pH, respectively, in the set of wine samples analysed. These preliminary results showed that the assessment of wine composition by Vis and short wavelengths in the NIR is possible for either qualitative analysis (e.g. low-, medium- and high-quality grading), or for screening of composition during bottling and storage. Although low accuracy and precision were obtained for the chemical parameters routinely analysed in wine, calibration models for the chemical parameters were considered acceptable for screening purposes in terms of the standard errors obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-006-1031-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!