A micromachined interface for airborne sample-to-liquid transfer and its application in a biosensor system.

Lab Chip

Microsystem Technology Laboratory, School of Electrical Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

Published: December 2006

A novel micromachined interface for airborne sample-to-liquid adsorption and droplet-to-liquid transfer was designed and fabricated. It enables a robust sheet liquid flow serving as an adsorption site. The interface was characterised for flow and pressure properties and tested successfully for the transfer/adsorption of different samples. A qualitative theoretical model of the device characteristics is presented. We also used the interface to introduce a novel method and system for fast detection of dust- and vapour-based narcotics and explosives traces. The microfluidic vapour-to-liquid adsorption interface was coupled to a set of downstream QCM sensors. The system was tested successfully, with 50 ng cocaine samples rendering 15 Hz frequency shifts and with 100 ng heroine samples rendering 50 Hz frequency shifts. Gravitation invariance of the open liquid interface was demonstrated successfully, with the interface mounted upside down as well as vertically. The detection time was reduced to half of the time needed in previous systems. Machine size, weight and cost were reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b612526nDOI Listing

Publication Analysis

Top Keywords

micromachined interface
8
interface airborne
8
airborne sample-to-liquid
8
samples rendering
8
rendering frequency
8
frequency shifts
8
interface
6
sample-to-liquid transfer
4
transfer application
4
application biosensor
4

Similar Publications

Evaluating the Potential of Microdroplet Flow in Two-Phase Biocatalysis: A Systematic Study.

ACS Appl Mater Interfaces

January 2025

Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, DE-38124 Braunschweig, Germany.

Two-phase biocatalysis in batch reactions often suffers from inefficient mass transfer, inconsistent reaction conditions, and enzyme inactivation issues. Microfluidics offer uniform and controlled environments ensuring better reproducibility and enable efficient, parallel processing of many small-scale reactions, making biocatalysis more scalable. In particular, the use of microfluidic droplets can increase the interfacial area between the two phases and can therefore also increase reaction rates.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a commonly synthetic chemical mainly used in producing plastic items. It is an endocrine-disrupting compound that causes irreversible health and environmental damage. Developing a simple method for BPA effective quantitative monitoring is emergently necessary.

View Article and Find Full Text PDF

Serious electron leakage and poor hole injection efficiency are still challenges for deep ultraviolet AlGaN-based light-emitting diodes with a traditional structure in achieving high performance. Currently, the majority of research works concentrate on optimizing the structures of the electron blocking layer (EBL) and last quantum barrier (LQB) separately, rather than considering them as an integrated structure. Therefore, in this study, an Al-content-varied AlGaN composite last quantum barrier (CLQB) layer is proposed to replace the traditional EBL and LQB layers.

View Article and Find Full Text PDF

Fatigue-Induced Failure of Polysilicon MEMS: Nonlinear Reduced-Order Modeling and Geometry Optimization of On-Chip Testing Device.

Micromachines (Basel)

December 2024

Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.

In the case of repeated loadings, the reliability of inertial microelectromechanical systems (MEMS) can be linked to failure processes occurring within the movable structure or at the anchors. In this work, possible debonding mechanisms taking place at the interface between the polycrystalline silicon film constituting the movable part of the device and the silicon dioxide at the anchor points are considered. In dealing with cyclic loadings possibly inducing fatigue failure, a strategy is proposed to optimize the geometry of an on-chip testing device designed to characterize the strength of the aforementioned interface.

View Article and Find Full Text PDF

This paper constructs a numerical simulation model for the deformation of droplets in a variable cross-section groove of a liquid droplet MEMS switch under different directions, amplitudes, frequencies, and waveforms of acceleration. The numerical simulation utilizes the level set method to monitor the deformation surface boundary of the metal droplets. The simulation outcomes manifest that when the negative impact acceleration on the -axis is 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!