Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2169/internalmedicine.46.6170 | DOI Listing |
Nature
December 2024
Biological Design Center, Boston University, Boston, MA, USA.
Natural tissues are composed of diverse cells and extracellular materials whose arrangements across several length scales-from subcellular lengths (micrometre) to the organ scale (centimetre)-regulate biological functions. Tissue-fabrication methods have progressed to large constructs, for example, through stereolithography and nozzle-based bioprinting, and subcellular resolution through subtractive photoablation. However, additive bioprinting struggles with sub-nozzle/voxel features and photoablation is restricted to small volumes by prohibitive heat generation and time.
View Article and Find Full Text PDFMarti-Aguado D, Arnouk J, Liang JX, Lara-Romero C, Behari J, Furlan A, Jimenez-Pastor A, Ten-Esteve A, Alfaro-Cervello C, Bauza M, Gallen-Peris A, Gimeno-Torres M, Merino-Murgui V, Perez-Girbes A, Benlloch S, Pérez-Rojas J, Puglia V, Ferrández-Izquierdo A, Aguilera V, Giesteira B, França M, Monton C, Escudero-García D, Alberich-Bayarri Á, Serra MA, Bataller R, Romero-Gomez M, Marti-Bonmati L. Development and validation of an image biomarker to identify metabolic dysfunction associated steatohepatitis: MR-MASH score. Liver Int.
View Article and Find Full Text PDFThis paper is devoted to studying the Bessel beam propagation in cylindrical coordinates using the Hankel transform beam propagation method (HT-BPM) and their behavior in different scenarios in the microscale and meter scale of propagation distances. The study compares the results obtained from the HT-BPM with another fast Fourier transform beam propagation method (FFT-BPM) to validate the accuracy and effectiveness of the HT-BPM in modeling Bessel beam propagation. The axial intensity of Bessel beam propagation is analyzed using the HT-BPM.
View Article and Find Full Text PDFFertil Steril
January 2025
Department of Public Health, University of Naples Federico II, Naples, Italy.
Small
November 2024
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
Fractal assembly technology enables scalable construction of organic crystal patterns for emerging nanoelectronics and optoelectronics. Here, a polymer-templating assembly strategy is presented for centimeter-scale patterned growth of fractal organic crystals (FOCs). These structures are formed by drop-coating perylene solution directly onto a gelatin-modified surface, resulting in the formation of crisscross fractal patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!