A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serotonin modulates pallidal neuronal activity in the awake monkey. | LitMetric

Serotonin modulates pallidal neuronal activity in the awake monkey.

J Neurosci

Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Memphis, Memphis, Tennessee 38163, USA.

Published: January 2007

Serotonin (5-HT)-containing neurons in the dorsal raphe project to the external and internal segments of the pallidum, which express several 5-HT receptors. Although the involvement of 5-HT in basal ganglia movement control has been suggested, little is known about the physiological action of 5-HT in the pallidum. Previous anatomical studies and in vitro physiological studies in other brain areas have suggested the following possibilities: (1) 5-HT suppresses GABAergic inhibition through presynaptic 5-HT1B receptors; (2) 5-HT decreases the firing of pallidal neurons through postsynaptic 5-HT1A receptors; and (3) 5-HT postsynaptically excites pallidal neurons through activation of 5-HT2C, 5-HT4, or 5-HT7 receptors. To test these possibilities, we examined the effects of locally applied agonists and antagonists of 5-HT on spontaneous neuronal firing and on excitatory and inhibitory responses of pallidal neurons to electrical stimulation of the motor cortex in awake monkeys. Although in vivo experiments could not conclusively determine the receptor types or the active sites involved in the observed effects, the results suggested the following possibilities: (1) 5-HT strongly suppresses GABAergic inhibition probably through 5-HT1B receptors; (2) in the external pallidal segment, the suppression may involve additional receptors or mechanisms; and (3) 5-HT suppresses glutamatergic excitation probably through 5-HT1A (and not 5-HT1B) receptors. The present study did not isolate or identify the existence of strong, direct postsynaptic inhibitory or excitatory effects of 5-HT. Thus, present results imply that 5-HT modulates synaptic inputs of both pallidal segments and exerts a significant role in movement control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672275PMC
http://dx.doi.org/10.1523/JNEUROSCI.4058-06.2007DOI Listing

Publication Analysis

Top Keywords

5-ht suppresses
12
5-ht1b receptors
12
pallidal neurons
12
5-ht
11
movement control
8
suggested possibilities
8
possibilities 5-ht
8
suppresses gabaergic
8
gabaergic inhibition
8
receptors 5-ht
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!