Disrupted-In-Schizophrenia 1 (DISC1) is a candidate gene for susceptibility to schizophrenia. DISC1 is reported to interact with NudE-like (NUDEL), which forms a complex with lissencephaly-1 (LIS1) and 14-3-3epsilon. 14-3-3epsilon is involved in the proper localization of NUDEL and LIS1 in axons. Although the functional significance of this complex in neuronal development has been reported, the transport mechanism of the complex into axons and their functions in axon formation remain essentially unknown. Here we report that Kinesin-1, a motor protein of anterograde axonal transport, was identified as a novel DISC1-interacting molecule. DISC1 directly interacted with kinesin heavy chain of Kinesin-1. Kinesin-1 interacted with the NUDEL/LIS1/14-3-3epsilon complex through DISC1, and these molecules localized mainly at cell bodies and partially in the distal part of the axons. DISC1 partially colocalized with Kinesin family member 5A, NUDEL, LIS1, and 14-3-3epsilon in the growth cones. The knockdown of DISC1 by RNA interference or the dominant-negative form of DISC1 inhibited the accumulation of NUDEL, LIS1, and 14-3-3epsilon at the axons and axon elongation. The knockdown or the dominant-negative form of Kinesin-1 inhibited the accumulation of DISC1 at the axons and axon elongation. Furthermore, the knockdown of NUDEL or LIS1 inhibited axon elongation. Together, these results indicate that DISC1 regulates the localization of NUDEL/LIS1/14-3-3epsilon complex into the axons as a cargo receptor for axon elongation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672274 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3826-06.2006 | DOI Listing |
Nat Commun
January 2019
Developmental and Cell Biology and Physics, University of California, Irvine, CA, USA.
Single-molecule cytoplasmic dynein function is well understood, but there are major gaps in mechanistic understanding of cellular dynein regulation. We reported a mode of dynein regulation, force adaptation, where lipid droplets adapt to opposition to motion by increasing the duration and magnitude of force production, and found LIS1 and NudEL to be essential. Adaptation reflects increasing NudEL-LIS1 utilization; here, we hypothesize that such increasing utilization reflects CDK5-mediated NudEL phosphorylation, which increases the dynein-NudEL interaction, and makes force adaptation possible.
View Article and Find Full Text PDFCell Mol Life Sci
April 2017
Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil.
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions.
View Article and Find Full Text PDFNat Commun
August 2016
Department of Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA.
Most sub-cellular cargos are transported along microtubules by kinesin and dynein molecular motors, but how transport is regulated is not well understood. It is unknown whether local control is possible, for example, by changes in specific cargo-associated motor behaviour to react to impediments. Here we discover that microtubule-associated lipid droplets (LDs) in COS1 cells respond to an optical trap with a remarkable enhancement in sustained force production.
View Article and Find Full Text PDFAnnu Rev Cell Dev Biol
September 2016
Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093; email:
Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis.
View Article and Find Full Text PDFMol Biol Cell
November 2013
Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 Department of Biology, Johns Hopkins University, Baltimore, MD 21218 Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037.
Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end-directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!