The sensory innervation of the rat kidney and ureter was investigated in wholemount preparations and sectioned materials by labeling the afferent nerve fibers with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) transported anterogradely from dorsal root ganglia. Labeled fibers were seen in large numbers in the ureter and in the lining of the renal pelvis, where they were located in the adventitia, smooth muscle, subepithelial connective tissue, and epithelium. Most of the fibers in the ureter and ureteropelvic junctional zone traveled parallel to the long axis of the organ. In contrast, fibers in the widest part of the funnel-shape renal pelvis were oriented predominantly in a circumferential fashion. Many of the pelvic afferents were extremely fine and appeared to terminate as free nerve endings. Modest networks of labeled axons were also observed around branches of the renal artery; the greatest innervation was supplied to the distal portions of the interlobar arteries and to the arcuate arteries. Only single axons were observed around the interlobular arteries, and very few fibers were seen around afferent arterioles or near glomeruli. In contrast to the arteries, branches of the renal vein were relatively sparsely innervated. Occasional labeled fibers entered the renal cortex and formed intimate associations with renal tubules; however, the vast majority of renal tubular elements were not contacted by labeled sensory fibers. Labeled fibers were never observed in the renal medulla or in the papilla. The present study represents the first time that the sensory innervation of the kidney and ureter has been investigated by using a highly specific anterograde nerve tracing technique. The pattern of innervation demonstrated here reveals an anatomical configuration of ureteral and renal pelvic sensory nerves consistent with a role in detection of ureteral and pelvic pressure and chemical changes and a renal vascular sensory innervation that may monitor changes in renal arterial and venous pressure and chemical content. Still other renal afferent nerve endings may signal renal pain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.903110309DOI Listing

Publication Analysis

Top Keywords

sensory innervation
16
renal
13
kidney ureter
12
labeled fibers
12
innervation rat
8
rat kidney
8
wheat germ
8
germ agglutinin-horseradish
8
agglutinin-horseradish peroxidase
8
peroxidase wga-hrp
8

Similar Publications

Superior colliculus controls the activity of the substantia nigra pars compacta and ventral tegmental area in an asymmetrical manner.

J Neurosci

January 2025

Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.

Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.

View Article and Find Full Text PDF

The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.

View Article and Find Full Text PDF

Review of Outcomes After Peripheral Nerve Transfers for Motor Nerve Injury in the Upper Extremity.

JBJS Rev

November 2024

Division of Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Anschutz Medical Center, Aurora, Colorado.

Background: Modern nerve-to-nerve transfers are a significant advancement in peripheral nerve surgery. Nerve transfers involve transferring donor nerves or branches to recipient nerves close to the motor end unit, leading to earlier reinnervation and preservation of the musculotendinous units in proximal nerve injuries. After nerve reinnervation, function may be superior to traditional tendon transfer techniques in terms of strength and independent motion.

View Article and Find Full Text PDF

Reinnervation of Free Nipple Grafts Associated With Improved Erection Function.

Plast Reconstr Surg Glob Open

January 2025

From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

Background: Most patients undergoing breast surgery with free nipple grafts lose nipple erection (NE) function. This study aimed to evaluate the effect of nerve preservation and reconstruction with targeted nipple-areola complex reinnervation (TNR) on NE following gender-affirming mastectomy with free nipple grafting.

Methods: Patients undergoing gender-affirming mastectomy with free nipple grafts were prospectively enrolled.

View Article and Find Full Text PDF

C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!