Elementary growth processes such as kink initiation, adding a molecule to a kink, and adding a molecule between two neighboring kinks and between two grains are theoretically studied in pentacene films by adding one molecule at a time to a predefined aggregate. For each molecule, the potential energy surface is calculated using the MM3 molecular mechanics force field, which allowed one to identify useful parameters like the energy barrier for diffusion and the energy to create kinks, as well as defect configurations. Depending on the properties of the potential energy surface and the resulting growth-condition-dependent probabilities of initiating defect configurations in the film, three types of pentacene defects are identified: a thermally activated defect, an intrinsic defect, and a kinetic defect. Upon film growth, most defects relax into the ideal crystal configuration. Bulk defects that resist relaxation have densities lower than 10(16) defects/cm3 at typical growth conditions. Grain boundary defects, on the other hand, are very stable. Moreover, interstitial molecules at grain boundaries are identified as a source of compressive stress.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0653003DOI Listing

Publication Analysis

Top Keywords

adding molecule
12
elementary growth
8
growth processes
8
potential energy
8
energy surface
8
defect configurations
8
defects
5
defect
5
microscopic description
4
description elementary
4

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.

View Article and Find Full Text PDF

Cation-Vacancy Engineering in Cobalt Selenide Boosts Electrocatalytic Upcycling of Polyester Thermoplastics at Industrial-Level Current Density.

Adv Mater

January 2025

State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

The past decades have witnessed the increasing accumulation of plastics, posing a daunting environmental crisis. Among various solutions, converting plastics into value-added products presents a significant endeavor. Here, an electrocatalytic upcycling route that efficiently converts waste poly(butylene terephthalate) plastics into high-value succinic acid with high Faradaic efficiency of 94.

View Article and Find Full Text PDF

Refinement of Atomic Polarizabilities for a Polarizable Gaussian Multipole Force Field with Simultaneous Considerations of Both Molecular Polarizability Tensors and In-Solution Electrostatic Potentials.

J Chem Inf Model

January 2025

Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.

View Article and Find Full Text PDF

Proteolysis-Targeting Chimeras (PROTAC) are a bifunctional molecule that binds to a protein of interest (POI) and a ubiquitin ligase, thereby inducing the ubiquitination and degradation of POI. Many PROTACs currently utilize a limited number of ubiquitin ligases, such as von Hippel-Lindau (VHL) and Cereblon. Because these ubiquitin ligases are widely expressed in normal tissues, unexpected side effects can occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!