[Multifunctional 14-3-3 proteins of plant cell].

Postepy Biochem

Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 5 Miedzychodzka St., Poznań, Poland.

Published: February 2007

The 14-3-3 proteins are a family of highly conserved proteins found in all eukaryotes - from the yeasts to mammals. They regulate several cellular processes recognizing unique conservative, mostly phosphorylated motif of partner proteins. Binding of the 14-3-3 proteins regulates their partners through a variety of mechanisms, such as altering their catalytic activity, subcellular localization, stability or altering their interactions with other protein molecules. The native 14-3-3 proteins are present in form of homo- and hetero-dimers. The most structurally variable N-and C-termini are responsible for isoform specific protein-protein interactions, and cellular localization. In plant cell, 14-3-3 proteins appear to play an important role in regulation of key enzymes of carbon and nitrogen metabolism, modulation ion pumps and channels. They are also involved in signal transduction pathways and even in gene expression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

14-3-3 proteins
20
proteins
7
[multifunctional 14-3-3
4
proteins plant
4
plant cell]
4
14-3-3
4
cell] 14-3-3
4
proteins family
4
family highly
4
highly conserved
4

Similar Publications

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

4D-DIA Proteomics Uncovers New Insights into Host Salivary Response Following SARS-CoV-2 Omicron Infection.

J Proteome Res

January 2025

PPGEMN, School of Engineering, Mackenzie Presbyterian University & MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São Paulo 01302-907, Brazil.

Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.

View Article and Find Full Text PDF

Background And Purpose: F. nucleatum, a gram-negative oral bacteria, is abundant in laryngeal cancer (LC). While specific 14-3-3 proteins act as LC oncogenes, the link between F.

View Article and Find Full Text PDF

Protein-protein interactions involving 14-3-3 proteins regulate various cellular activities in normal and pathological conditions. These interactions have mostly been reported to be phosphorylation-dependent, but the 14-3-3 proteins also interact with unphosphorylated proteins. In this work, we investigated whether phosphorylation is required, or, alternatively, whether negative charges are sufficient for 14-3-3ε binding.

View Article and Find Full Text PDF

NHSL3 controls single and collective cell migration through two distinct mechanisms.

Nat Commun

January 2025

Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!