The role of perivascular fat in the control of vascular function was studied using lipoatrophic A-ZIP/F1 transgenic mice. Only a small amount of brown fat was found around the aorta but not around mesenteric arteries. Blood pressure of A-ZIP/F1 mice became higher than wild-type (WT) mice from 10 weeks of age. The presence of perivascular fat reduced the contraction of WT aorta to phenylephrine and serotonin, whereas this effect was either absent or less prominent in A-ZIP/F1 aorta. In WT mice, transfer of solution incubated with aorta with fat to aorta with fat removed caused a relaxation response, but not in A-ZIP/F1 mice, indicating the release of a relaxation factor from perivascular fat in WT aorta. This factor was acting through the activation of calcium-dependent potassium channels. Perfusion of phenylephrine to the isolated mesenteric bed caused a higher increase in perfusion pressure in A-ZIP/F1 than in WT mice. Contractile response of aorta to angiotensin II (Ang II) was mediated by Ang II type 1 receptors and was higher in A-ZIP/F1 than in WT mice. Expression of Ang II type 1 receptors but not Ang II type 2 receptors was higher in aorta of A-ZIP/F1 than WT mice. Treatment with an Ang II type 1 receptor antagonist (TCV 116, 10 mg/kg per day) for 2 weeks normalized the blood pressure of A-ZIP/F1 mice. These results suggest that the absence of perivascular fat tissue, which enhances the contractile response of the blood vessels to agonists, and an upregulation of vascular Ang II type 1 receptors in A-ZIP/F1 mice, are some of the mechanisms underlying the blood pressure elevation in these lipoatrophic mice.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000255576.16089.b9DOI Listing

Publication Analysis

Top Keywords

a-zip/f1 mice
28
ang type
20
blood pressure
16
perivascular fat
16
type receptors
16
mice
12
fat aorta
12
pressure a-zip/f1
12
a-zip/f1
9
lipoatrophic mice
8

Similar Publications

Two adrenalectomies py -45erformed fourteen years apart notoriously alleviated insulin resistance in a female teenager with Congenital Generalized Lipoatrophy (CGL, 1988) and in a murine model of CGL (2002). Following a successful therapeutic trial with anti-glucocorticoids, we performed the first surgical procedure on an 18-year-old girl. Before surgery, the anti-glucocorticoid therapy produced a rapid and striking drop in fasting serum insulin levels (from over 400 to 7.

View Article and Find Full Text PDF

Endothelial cells and leptin receptor (LepR) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF.

View Article and Find Full Text PDF

The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice.

J Biol Chem

June 2017

From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan.

Obesity causes excess fat accumulation in white adipose tissues (WAT) and also in other insulin-responsive organs such as the skeletal muscle, increasing the risk for insulin resistance, which can lead to obesity-related metabolic disorders. Peroxisome proliferator-activated receptor-α (PPARα) is a master regulator of fatty acid oxidation whose activator is known to improve hyperlipidemia. However, the molecular mechanisms underlying PPARα activator-mediated reduction in adiposity and improvement of metabolic disorders are largely unknown.

View Article and Find Full Text PDF

Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is an essential transcription factor for adipocyte differentiation. In mesenchymal stem cells, PPARγ has been assumed to play a negative role in osteoblastic differentiation, by working in an adipogenesis dependent manner, due to the reciprocal relationship between osteoblast and adipocyte differentiation. However, the direct role of PPARγ in osteoblast function is not fully understood, due in part to inadequate model systems.

View Article and Find Full Text PDF

Myostatin inhibition prevents diabetes and hyperphagia in a mouse model of lipodystrophy.

Diabetes

October 2012

Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.

Lipodystrophies are characterized by a loss of white adipose tissue, which causes ectopic lipid deposition, peripheral insulin resistance, reduced adipokine levels, and increased food intake (hyperphagia). The growth factor myostatin (MSTN) negatively regulates skeletal muscle growth, and mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. MSTN inhibition may therefore be efficacious in ameliorating diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!