A PHP Error was encountered

Severity: 8192

Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: helpers/my_audit_helper.php

Line Number: 8900

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8900
Function: str_replace

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3362
Function: formatAIDetailSummary

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting Fanconi anemia/BRCA2 pathway defects in cancer: the significance of preclinical pharmacogenomic models. | LitMetric

Defects in the Fanconi anemia (FA) pathway occur in subsets of diverse human cancers. The hypersensitivity of FA pathway-deficient cells to DNA interstrand cross-linking and possibly other agents renders these genes attractive targets for a genotype-based, individualized anticancer therapy. A prerequisite before clinical trials is the validation and quantification of this hypersensitivity in suitable preclinical pharmacogenomic models. In addition, the effects of combinational therapy need to be evaluated and novel agents sought. We discuss here the pitfalls and limitations in the interpretation of common FA models when applied to the validation of FA gene defects as therapeutic targets. In general, all preclinical models are prone to certain artifacts and, thus, promising results in a single or few models rarely translate into clinical success. Nevertheless, the extraordinary robustness of FA pathway-deficient cells to interstrand cross-linking agents, which are observable in virtually any model independent of species, cell type, or technique used to engineer the gene defect, in various in vitro and in vivo settings, renders these gene defects particularly attractive for targeted therapy. Clinical trials are now under way.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-06-1637DOI Listing

Publication Analysis

Top Keywords

preclinical pharmacogenomic
8
pharmacogenomic models
8
pathway-deficient cells
8
interstrand cross-linking
8
cross-linking agents
8
clinical trials
8
gene defects
8
models
5
targeting fanconi
4
fanconi anemia/brca2
4

Similar Publications

Background: Breast cancer remains the most common invasive cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options. Trastuzumab (Tz) is typically used to treat HER2-positive breast cancers, but its potential in TNBC is unclear.

View Article and Find Full Text PDF

Background: Patient-derived xenograft (PDX) is currently considered a preferred preclinical model to evaluate drug sensitivity, explore drug resistance mechanisms, and select individualized treatment regimens.

Methods: Histopathological examination, immunohistochemistry and whole-exome sequencing confirmed similarity between our PDX tumors and primary tumors in terms of morphology and genetic characteristics. The drug reactivity of the PDX tumor was validated in vivo.

View Article and Find Full Text PDF

Treatment with novel topoisomerase inhibitors in Ewing sarcoma models reveals heterogeneity of tumor response.

Front Cell Dev Biol

October 2024

Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Introduction: The topoisomerase 1 (TOP1) inhibitor irinotecan is a standard-of-care agent for relapsed Ewing sarcoma (EWS), but its efficacy is limited by chemical instability, rapid clearance and reversibility, and dose-limiting toxicities, such as diarrhea. Indenoisoquinolines (IIQs) represent a new class of clinical TOP1 inhibitors designed to address these limitations.

Methods: In this study, we evaluated the preclinical efficacy of three IIQs (LMP400, LMP744, and LMP776) in relevant models of EWS.

View Article and Find Full Text PDF

Prediction of Pharmacokinetic Drug-Drug Interactions Involving Anlotinib as a Victim by Using Physiologically Based Pharmacokinetic Modeling.

Drug Des Devel Ther

October 2024

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People's Republic of China.

Background: Anlotinib was approved as a third line therapy for advanced non-small cell lung cancer in China. However, the impact of concurrent administration of various clinical drugs on the drug-drug interaction (DDI) potential of anlotinib remains undetermined. As such, this study aims to evaluate the DDI of anlotinib as a victim by establishing a physiologically based pharmacokinetic (PBPK) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!