Sweetpotato leaves (Ipomoea batatas L.) contain a high content of polyphenolics that consist of caffeic acid, chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and 3,4,5-tri-O-caffeoylquinic acid. We investigated the suppression of the proliferation of selected human cancer cells by phenolic compounds isolated from sweetpotato leaf. The human cancer cells used in this research included a stomach cancer (Kato III), a colon cancer (DLD-1), and a promyelocytic leukemia cell (HL-60). Caffeic acid and di- and tricaffeoylquinic acids dose-dependently depressed cancer cell proliferation, and the difference in sensitivity between caffeoylquinic acid derivatives and each kind of cancer cell was observed. Specifically, 3,4,5-tri-O-caffeoylquinic acid effectively depressed the growth of three kinds of cancer cells, and caffeic acid had an exceptionally higher effect against HL-60 cells than other di- and tricaffeoylquinic acids. In attempting to clarify the mechanism of growth suppression with the addition of the apoptotic inhibitor N-ethylmaleimide, we observed that the nuclear granulation in 3,4,5-tri-O-caffeoylquinic acid-treated HL-60 cells suggested apoptosis induction. This effect was confirmed by DNA fragmentation, an increase of caspase-3 activity, and expression of c-Jun. Growth suppression of HL-60 cells by 3,4,5-tri-O-caffeoylquinic acid was determined to be the result of apoptotic death of the cells. These results indicate that 3,4,5-tri-O-caffeoylquinic acid may have potential for cancer prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0620259 | DOI Listing |
Neoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFInt J Gynecol Pathol
December 2024
Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
The incidence of neurotrophic tyrosine kinase receptor (NTRK) fusion uterine sarcoma is extremely low, and reports have been mostly focused on cases localized to the cervix. So far, only 4 cases have been reported of the uterine corpus. In this study, we reported a case of NTRK fusion corpus sarcoma.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.
View Article and Find Full Text PDFPLoS One
December 2024
Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China.
Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.
View Article and Find Full Text PDFPLoS One
December 2024
Servier, Research & Development, Gif-sur-Yvette, France.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!