Lipid rafts: at a crossroad between cell biology and physics.

Nat Cell Biol

Department of Cell and Developmental Biology & Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 121 Taylor Hall CB#7090, Chapel Hill, NC 27599, USA.

Published: January 2007

Membrane lateral heterogeneity is accepted as a requirement for the function of biological membranes and the notion of lipid rafts gives specificity to this broad concept. However, the lipid raft field is now at a technical impasse because the physical tools to study biological membranes as a liquid that is ordered in space and time are still being developed. This has lead to a disconnection between the concept of lipid rafts as derived from biochemical and biophysical assays and their existence in the cell. Here, we compare the concept of lipid rafts as it has emerged from the study of synthetic membranes with the reality of lateral heterogeneity in biological membranes. Further application of existing tools and the development of new tools are needed to understand the dynamic heterogeneity of biological membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb0107-7DOI Listing

Publication Analysis

Top Keywords

lipid rafts
16
biological membranes
16
concept lipid
12
lateral heterogeneity
8
heterogeneity biological
8
lipid
5
membranes
5
rafts crossroad
4
crossroad cell
4
cell biology
4

Similar Publications

A study of the lipidome and proteome was performed on milk fat globule membranes (MFGM) originating from milk samples from high (HL) and low (LL) lipolysis groups of cows. Combined univariate and multivariate statistical analyses proposed a set of variables highly associated to contrasted samples with regard to milk lipolysis. Milk from HL group were related to 4 phosphatidylinositols, 8 phosphatidylcholines, 1 sphingomyelin and 27 proteins, among them the phosphatidylcholine/phosphatidylethanolamine ratio and ORM1 may contribute to the membrane remodeling of the MFGM.

View Article and Find Full Text PDF

As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!