Epithelial sodium channels (ENaC) are expressed in the apical membrane of high resistance Na(+) transporting epithelia and have a key role in regulating extracellular fluid volume and the volume of airway surface liquids. Maturation and activation of ENaC subunits involves furin-dependent cleavage of the ectodomain at two sites in the alpha subunit and at a single site within the gamma subunit. We now report that the serine protease prostasin further activates ENaC by inducing cleavage of the gamma subunit at a site distal to the furin cleavage site. Dual cleavage of the gamma subunit is predicted to release a 43-amino acid peptide. Channels with a gamma subunit lacking this 43-residue tract have increased activity due to a high open probability. A synthetic peptide corresponding to the fragment cleaved from the gamma subunit is a reversible inhibitor of endogenous ENaCs in mouse cortical-collecting duct cells and in primary cultures of human airway epithelial cells. Our results suggest that multiple proteases cleave ENaC gamma subunits to fully activate the channel.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M610636200DOI Listing

Publication Analysis

Top Keywords

gamma subunit
20
cleavage gamma
8
subunit
6
gamma
6
epithelial na+
4
na+ channels
4
channels fully
4
fully activated
4
activated furin-
4
furin- prostasin-dependent
4

Similar Publications

GNG2 inhibits brain metastases from colorectal cancer via PI3K/AKT/mTOR signaling pathway.

Sci Rep

January 2025

Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.

G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.

View Article and Find Full Text PDF

[Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes].

Zhongguo Zhong Yao Za Zhi

December 2024

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.

This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.

View Article and Find Full Text PDF

WEE1 is a key tyrosine kinase involved in the cell cycle regulation with potent anticancer effects in various cancer types including colorectal cancer. Recent studies have focused on the potential of combinational inhibition of Ataxia Telangiectasia and Rad-3-related protein (ATR) and WEE1 in increasing apoptosis in cancer cells. Therefore, this study investigates the effects of inhibiting WEE1, by employing AZD1775, on colorectal cancer cells' susceptibility to VE-822-induced DNA damage and apoptosis.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!