Thin spongy myocardium is critical at early embryonic stage [before embryonic day (E) 13.5 in mice] to allow diffusion of oxygen and nutrients to the developing cardiomyocytes. However, establishment of compact myocardium at later stage ( approximately E16.5) during development is necessary to prepare for the increase in demand for blood circulation. Elucidating molecular targets of the spongy-compact myocardium transition between E13.5 and E16.5 in heart development is thus important. Previous studies demonstrated that multiple transcription factors and signaling pathways are involved in the regulation and function of the myocardium in heart development. Disruption of certain transcription factors or critical components of signaling pathways frequently causes structural malformation in heart and persistence of "thin spongy myocardium". We have recently demonstrated activation of the calcineurin/NFAT signaling pathway at E14.5 in developing myocardium. Constitutive inhibition of the calcineurin/NFAT signaling pathway caused embryonic lethality. Molecular targets downstream of the calcineurin/NFAT signaling pathway, however, remains elusive. Here, we report transcription targets, independently and dependently, regulated by the calcineurin/NFAT signaling during the E13.5-E16.5 myocardium transition. We have uncovered that expression of one-third of the induced genes during myocardium transition is calcineurin/NFAT-dependent. Among these calcineurin/NFAT-dependent transcription targets, there is a dosage-dependent regulation. Molecular studies indicate that formation of distinct NFAT:DNA complex, in part, accounts for the dosage-dependent regulation. Thus, in addition to temporal and spatial regulation, dosage-dependent threshold requirement provides another mechanism to modulate transcription response mediated by the calcineurin/NFAT signaling during heart development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2006.11.036 | DOI Listing |
Front Mol Neurosci
November 2024
Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved.
View Article and Find Full Text PDFNeurobiol Aging
February 2025
Department of Pathology and Laboratory Medicine, University of California, 837 Health Sciences Rd., Irvine, CA 92697, USA. Electronic address:
Brain signaling of calcineurin (CN) and nuclear factor of activated T-cells (NFAT) transcription factor increases in Alzheimer disease (AD) and is associated with synaptic loss, neurodegeneration, neuroinflammation, amyloid-β (Aβ) production, and cognitive decline. CN/NFAT inhibitors ameliorate these neuropathologies in mouse models of AD. Further, chronic use of tacrolimus in transplant patients reduces risk of AD.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea.
Heart failure, a major public health issue, often stems from prolonged stress or damage to the heart muscle, leading to cardiac hypertrophy. This can progress to heart failure and other cardiovascular problems. Doxorubicin (DOX), a common chemotherapy drug, and isoproterenol (ISO), a β-adrenergic agonist, both induce cardiac hypertrophy through different mechanisms.
View Article and Find Full Text PDFCardiovasc Res
December 2024
Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
Life Sci
November 2024
Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India. Electronic address:
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!