Homo- and heteroleptic complexes of four-membered group 13 metal(I) N-heterocyclic carbene analogues with group 10 metal(0) fragments.

Inorg Chem

Center for Fundamental and Applied Main Group Chemistry, School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.

Published: January 2007

A series of complexes between recently developed four-membered group 13 metal(I) heterocycles and group 10 metal(0) fragments have been prepared and structurally characterized. One prepared complex, [Pt{Ga[N(Ar)]2CNCy2}3] (Ar = C6H3Pri2-2,6; Cy = cyclohexyl), possesses the shortest Pt-Ga bonds yet reported, the covalent components of which are suggested by theoretical studies to have significant pi character.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic062057dDOI Listing

Publication Analysis

Top Keywords

four-membered group
8
group metali
8
group metal0
8
metal0 fragments
8
homo- heteroleptic
4
heteroleptic complexes
4
complexes four-membered
4
group
4
metali n-heterocyclic
4
n-heterocyclic carbene
4

Similar Publications

Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators.

View Article and Find Full Text PDF

Harnessing Oxetane and Azetidine Sulfonyl Fluorides for Opportunities in Drug Discovery.

J Am Chem Soc

December 2024

Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.

Four-membered heterocycles such as oxetanes and azetidines represent attractive and emergent design options in medicinal chemistry due to their small and polar nature and potential to significantly impact the physiochemical properties of drug molecules. The challenging preparation of these derivatives, especially in a divergent manner, has severely limited their combination with other medicinally and biologically important groups. Consequently, there is a substantial demand for mild and effective synthetic strategies to access new oxetane and azetidine derivatives and molecular scaffolds.

View Article and Find Full Text PDF
Article Synopsis
  • - A study investigated how gold catalysts affect the synthesis of pyrazolines and dihydropyridines from imines and methyl phenylpropiolate, focusing on three different imines with unique substituents.
  • - The research found that the type of nitrogen substituent influences the reaction path: NHCOMe leads to outward ring opening and pyrazoline products, while aromatic substituents prompt inward ring opening and dihydropyridine products.
  • - The configuration of dihydropyridine is determined by the substituent on the aromatic ring, with electron-donating groups causing direct formation of 1,4-dihydropyridine and electron-withdrawing groups leading to 1,2-dihyd
View Article and Find Full Text PDF

Palladium catalyzed ortho-C(sp)-H activation/cyclization of aryl amines assisted by imine and vinylacetic acid.

Nat Commun

November 2024

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.

Palladium-catalyzed directed C - H functionalization/cyclization is an effective approach for synthesizing nitrogen heterocycles. Imine, known for its ease of installation/removal, has been extensively used in the C-H activation of aldehydes, ketones, and alkylamines. Nevertheless, it has been rarely explored in the C(sp)-H activation of aryl amines because of the generation of a strained four-membered palladacycle.

View Article and Find Full Text PDF

Metalation of dimesitylphosphane oxide, MesP(O)H (1), with alkali metal reagents (BuLi, NaH, and A(hmds); A = K, Rb, and Cs) in THF yields the corresponding dimesitylphosphinites of lithium (2-thf), sodium (3-thf), potassium (4-thf), rubidium (5-thf), and caesium (6). Their molecular structures exhibit a broad and fascinating variety. Dinuclear compounds 2-thf, 3-thf, and 5-thf have central four-membered AO rings, whereas the potassium congener crystallises as a tetranuclear complex with an inner AO heterocubane cage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!