Background: Fires, explosions, and extreme heat production may occur when sevoflurane reacts with desiccated barium hydroxide lime. The identity of the flammable gas has not previously been published, although carbon monoxide, methanol, formaldehyde, and methyl formate have been identified in low quantities.

Methods: The authors reacted sevoflurane with excess desiccated barium hydroxide lime or soda lime at 55 degrees, 100 degrees, 200 degrees, 300 degrees, and 400 degrees C. Formaldehyde, methanol, sodium formate, and hexafluoroisopropanol were reacted with barium hydroxide lime at 300 degrees or 400 degrees C. The authors measured hydrogen production by gas chromatography with a thermal conductivity detector and calculated the molar yield of hydrogen produced.

Results: Up to 3 moles of hydrogen were produced per mole of sevoflurane degraded. Each mole of formaldehyde produced up to 2 moles of hydrogen at 400 degrees C. Formate and hexafluoroisopropanol produced up to 1 mole of hydrogen each at 400 degrees C. More than 2 moles of hydrogen were produced by methanol at 400 degrees C. Soda lime and barium hydroxide lime produced similar amounts of hydrogen from sevoflurane above 200 degrees C, but barium hydroxide lime produced more than soda lime at lower temperatures. The temperature above which large amounts of hydrogen were produced seemed to be 300 degrees C.

Conclusions: Up to 3 moles of hydrogen are produced by the chemical reaction of sevoflurane with heated, desiccated absorbent. The high yield, ease of ignition, and low tissue solubility of hydrogen make it the most likely fuel in anesthesia machine fires due to the reaction of sevoflurane with desiccated absorbent.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-200701000-00023DOI Listing

Publication Analysis

Top Keywords

barium hydroxide
20
hydroxide lime
20
400 degrees
20
moles hydrogen
16
hydrogen produced
16
soda lime
12
degrees
12
300 degrees
12
hydrogen
11
desiccated barium
8

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Study on Phase Change Materials' Heat Transfer Characteristics of Medium Temperature Solar Energy Collection System.

Materials (Basel)

October 2024

School of Engineering (Aerospace, Mechanical and Manufacturing), RMIT University, Melbourne, VIC 3000, Australia.

Within the next five years, renewable energy is expected to account for approximately 80% of the new global power generation capacity, with solar power contributing to more than half of this growth. However, the intermittent nature of solar energy remains a significant challenge to fully realizing its potential. Thus, efficient energy storage is crucial for optimizing the effectiveness and dependability of renewable energy.

View Article and Find Full Text PDF

Ferroelectric (FE) semiconductors such as BaTiO support a remnant polarization after the application of an electric field that can promote the separation of photogenerated charge carriers. Here, we demonstrate FE-enhanced photocatalytic hydrogen evolution and photoelectrochemical water oxidation with barium titanate nanocrystals for the first time. Nanocrystals of the ferroelectric tetragonal structure type were obtained by a hydrothermal synthesis from TiO and barium hydroxide in 63% yield.

View Article and Find Full Text PDF

C-Banding of Plant Chromosomes.

Methods Mol Biol

June 2023

University of California, Riverside, CA, USA.

C-banding visualizes regions of chromosomes containing constitutive heterochromatin. It creates distinct patterns along the chromosome length and allows precise chromosome identification if C-bands are present in sufficient numbers. It is performed on chromosome spreads generated from fixed material, usually root tips or anthers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!