Oxaliplatin, an anticancer agent that affects both Na+ and K+ channels in frog peripheral myelinated axons.

Gen Physiol Biophys

Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR 9040, CNRS, bât. 32-33, 91198 Gif-sur-Yvette cedex, France.

Published: September 2006

The use of oxaliplatin, a relatively new chemotherapeutic agent, is somewhat limited since it produces a specific peripheral neuropathy regarding other neurotoxic anticancer platinum analogues. In order to investigate the mechanism of such a peripheral neuropathy, the effects of 1-100 micromol/l oxaliplatin were assessed on the nodal ionic currents of single frog myelinated axons as a model of peripheral excitable membranes. Oxaliplatin decreased both Na(+) and K(+) currents in a dose-dependent manner and within 5-10 min, without producing any marked changes in the current kinetics. It was about three to eight times more effective in reducing the Na(+) than the K(+) current. In addition, it shifted the voltage-dependence of both Na(+) and K(+) conductances towards negative membrane potentials. A negative shift in the steady-state inactivation-voltage curve of the peak Na(+) current was also observed in the presence of oxaliplatin. These effects were not reversed by washing the myelinated axons with an oxaliplatin-free solution for at least 30 min. It is concluded that oxaliplatin modifies the voltage-dependent ionic channels mainly by altering the external surface membrane potential. The knowledge of such a mechanism may help to counteract the neurotoxic action of this anticancer agent.

Download full-text PDF

Source

Publication Analysis

Top Keywords

myelinated axons
12
anticancer agent
8
peripheral neuropathy
8
na+ current
8
oxaliplatin
6
na+
5
oxaliplatin anticancer
4
agent na+
4
na+ channels
4
channels frog
4

Similar Publications

Introduction: Multiple Sclerosis (MS) is a complex auto-inflammatory disease affecting the brain and spinal cord, which results in axonal de-myelination and symptoms including fatigue, pain, and difficulties with vision and mobility. The involvement of the immune system in the pathology of MS is well established, particularly the adaptive T cell response, and there has been a particular focus on the IL-17-producing subset of Th17 cells and their role in driving disease. However, the importance of innate immune cells has not been so well characterised.

View Article and Find Full Text PDF

Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.

View Article and Find Full Text PDF

Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.

View Article and Find Full Text PDF

Wallerian degeneration (WD) was first discovered by Augustus Waller in 1850 in a transection of the glossopharyngeal and hypoglossal nerves in frogs. Initial studies suggested that the formation mechanism of WD is related to the nutrition of neuronal cell bodies to axons. However, with the wide application of transgenic mice in experiments, the latest studies have found that the mechanism of WD is related to axonal degeneration, myelin clearance and extracellular matrix.

View Article and Find Full Text PDF

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!