Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochrome P450 (CYP). We investigated the ability of CYP enzymes in rat, rabbit and human hepatic microsomes to oxidize ellipticine and evaluated suitable animal models mimicking its oxidation in humans. Ellipticine is oxidized by microsomes of all species to 7-hydroxy-, 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine and ellipticine N(2)-oxide. However, only rat microsomes generated the pattern of ellipticine metabolites reproducing that formed by human microsomes. While rabbit microsomes favored the production of ellipticine N(2)-oxide, human and rat microsomes predominantly formed 13-hydroxyellipticine. The species difference in expression and catalytic activities of individual CYPs in livers are the cause of these metabolic differences. Formation of 7-hydroxy- and 9-hydroxyellipticine was attributable to CYP1A in microsomes of all species. However, production of 13-hydroxy-, 12-hydroxyellipticine and ellipticine N(2)-oxide, the metabolites generating DNA adducts, was attributable to the orthologous CYPs only in rats and humans. CYP3A predominantly generates these metabolites in rat and human microsomes, while CYP2C3 activity prevails in microsomes of rabbits. The results underline the suitability of rat species as a model to evaluate human susceptibility to ellipticine.
Download full-text PDF |
Source |
---|
Neuro Endocrinol Lett
February 2019
Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
Objectives: Vandetanib¸ lenvatinib, and cabozantinib are tyrosine kinase inhibitors (TKIs) targeting VEGFR subtypes 1 and 2, EGFR and the RET-tyrosine kinase, thus considered as multiple TKIs. These TKIs have already been approved for treating patients suffering from thyroid cancer and renal cell carcinoma. Ellipticine, a DNA-damaging drug, is another anticancer agent that is effective against certain tumors of the thyroid gland, ovarian carcinoma, breast cancer and osteolytic breast cancer metastasis.
View Article and Find Full Text PDFCancer Res
November 2004
Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
Ellipticine is an antineoplastic agent, the mode of action of which is considered to be based on DNA intercalation and inhibition of topoisomerase II. We found that ellipticine also forms the cytochrome P450 (CYP)-mediated covalent DNA adducts. We now identified the ellipticine metabolites formed by human CYPs and elucidated the metabolites responsible for DNA binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!