Purpose: Retinal neurons and vasculature interact with each other under normal conditions, and occlusion of the retinal vasculature can result in damage to retinal neurons. Whether damage to the neural retina will damage the vasculature, however, is less clear. This study was conducted to explore the relationship between vascular and nonvascular cells of the retina. The response of the retinal vasculature to an injury (ischemia and reperfusion; I/R) that is known to cause neuronal degeneration was studied.
Methods: I/R injury to the retinas was induced in Lewis rats and C57BL/6J mice by elevating intraocular pressure (IOP), and reperfusion was established immediately afterward. Some rats were pretreated with aminoguanidine (AMG, 50 mg/Kg BW in drinking water) before the procedure. Poly(ADP-ribose) polymerase (PARP) activity and expression of inducible nitric oxide synthase (iNOS), and cycloxygenase-2 (COX-2) were measured by Western blot analysis, and levels of TNF-alpha and intercellular adhesion molecule (ICAM)-1 mRNA were measured by qPCR at 2 and 7 days after the procedure. Also at 2 and 7 days after the I/R injury, apoptosis of retinal neural cells (demonstrated by TUNEL assay), density of cells in the ganglion cell layer, and thickness of retinas were quantitated, and the number of TUNEL-positive capillary cells and degenerated capillaries were assessed. Retinal neurodegeneration and capillary degeneration were also examined in C57BL/6J mice 2, 5, 8, and 14 days after I/R injury.
Results: As expected, loss of cells in the retinal ganglion cell layer was apparent 2 days after I/R injury in the rat and mouse models. In contrast, the retinal vasculature had essentially no pathology at this time in either model. Surprisingly, the number of degenerated capillaries increased greatly by 7 to 8 days after the injury. Administration of aminoguanidine significantly inhibited the I/R-induced capillary degeneration as well as neurodegeneration in the rat model. Retinal I/R caused increased PARP activity (detected by poly(ADP-ribosy)lated proteins), as well as upregulation of iNOS, COX-2, TNF-alpha, and ICAM-1 levels in rats, consistent with an inflammatory process.
Conclusions: Capillary degeneration is an unrecognized component of acutely elevated IOP and develops only after neurodegeneration is severe. Thus, this finding raises the possibility that damage to the neural retina contributes to capillary degeneration. Aminoguanidine, a nonspecific inhibitor of iNOS, inhibited I/R-induced degeneration of both neuronal and vascular cells of the retina. The model of retinal ischemia and reperfusion will be a useful tool for investigating the relationship between neuronal damage and vascular damage in glaucoma and other diseases such as diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.06-0510 | DOI Listing |
Int Ophthalmol
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China.
Purpose: The purpose of this study is to investigate the role of Secretogranin III (Scg3) in the pathogenesis of intraocular neovascular diseases and assess its potential as a therapeutic target for novel treatment strategies.
Methods: A literature review was conducted to examine the expression of Scg3 in intraocular neovascular diseases. We reviewed studies on the interaction of Scg3 with its homologous receptors and its effect on endothelial cell proliferation, migration, and vascular permeability-key processes involved in angiogenesis and neovascularization.
Exp Eye Res
January 2025
Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan. Electronic address:
Diabetic retinopathy is a major ocular complication associated with diabetes mellitus. Pericyte loss is a hallmark of diabetic retinopathy. The platelet-derived growth factor (PDGF)-B-PDGF receptor-β (PDGFRβ) signaling pathway plays an important role in the proliferation and migration of pericytes.
View Article and Find Full Text PDFSurv Ophthalmol
January 2025
School of Medicine, Vita-Salute San Raffaele University, Milan, Italy; Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Electronic address:
Focal capillary ectasia in the macular region can manifest in distinct clinical scenarios, which can be categorized into two main entities: perifoveal vascular anomalous complex (PVAC) and telangiectatic capillaries (TelCaps). PVAC represents a primary, idiopathic condition, whereas TelCaps occur secondary to underlying vascular disorders, including diabetic macular edema and retinal vein occlusion. We provide a comprehensive analysis of these two entities, encompassing their clinical presentations, multimodal imaging findings, histological evidence, and differential diagnosis from other retinal microvascular abnormalities, such as Type 1 macular telangiectasia, adult-onset Coats disease, Type 3 macular neovascularization in age-related macular degeneration, and retinal arterial macroaneurysms.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
View Article and Find Full Text PDFClin Nephrol Case Stud
December 2024
Nephrology Center and the Okinaka Memorial Institute for Medical Research.
A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!