The reactogenic properties and immunological potency of modified cholera chemical vaccine (choleragen-toxoid + O-antigens Inaba and Ogawa) were tested in 278 volunteers aged 18 years and over in comparison with those of a commercial batch of monovalent cholera vaccine (choleragen-toxoid + O-antigen Inaba). The cholera vaccine, enriched with O-antigen Ogawa, was found to be safe; vaccination with this vaccine was not accompanied by the development of systemic and local reactions whose frequency and intensity met the requirements for the reactogenic properties of commercial cholera vaccine. The immunological potency of the bivalent vaccine with respect to strain Inaba was not inferior to that of the commercial vaccine; at the same time in persons immunized with the new preparation the titers of vibriocidal antibodies to strain of serovar Inaba were five-fold higher. The conclusion on the expediency of using cholera chemical vaccine enriched with O-antigen Ogawa was made.
Download full-text PDF |
Source |
---|
OMICS
January 2025
Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India.
Immunoinformatics, an integrative field consisting of bioinformatics and immunology, has showcased its potential in addressing zoonotic diseases, as evidenced during the Coronavirus disease 2019 (COVID-19) pandemic. However, its application in livestock health remains largely untapped. This opinion commentary explores how immunoinformatics, combined with advancements in genomics, multi-omics integration, and genome editing technologies, can revolutionize livestock management by enhancing disease resistance, vaccine development, and productivity.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored.
View Article and Find Full Text PDFJ Control Release
January 2025
College of Pharmaceutical Sciences, College of Chemistry, Chemical Engineering and Materials Science,, Soochow University, Suzhou 215123, People's Republic of China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China. Electronic address:
Vaccination may cure cancer patients by inducing tumor-specific immune responses. Radiotherapy is an appealing strategy to generate cancer vaccines in situ; thus far, however, only modest and short-lived immune responses are achieved. We here show that radiation combined with co-activating STING-TLR9 can generate powerful in situ cancer vaccines.
View Article and Find Full Text PDFNat Commun
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
Influenza B viruses pose a significant threat to global public health, leading to severe respiratory infections in humans and, in some cases, death. During the last 50 years, influenza B viruses of two antigenically distinct lineages (termed 'Victoria' and 'Yamagata') have circulated in humans, necessitating two different influenza B vaccine strains. In this study, we devised a novel vaccine strategy involving reciprocal amino acid substitutions at sites where Victoria- and Yamagata-lineage viruses differ, leading to the generation of 'hybrid' vaccine viruses with the potential to protect against both lineages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!