Synthesis and evaluation of polymeric continuous bed (monolithic) reversed-phase gradient stationary phases for capillary liquid chromatography and capillary electrochromatography.

J Biochem Biophys Methods

Instituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma I, Via Salaria Km 29,300, 00016 Monterotondo Scalo, Rome, Italy.

Published: February 2007

There is a demand of novel high resolution separation media for separation of complex mixtures, particularly biological samples. One of the most flexible techniques for development of new separation media currently is synthesis of the continuous bed (monolithic) stationary phases. In this study the capillary format gradient stationary phases were formed using continuous bed (monolith) polymerization in situ. Different reversed-phase stationary phase gradients were tailored and their resolution using capillary liquid chromatography and capillary electrochromatography at isocratic mobile phase conditions was evaluated. It is demonstrated, that efficiency and resolution of the gradient stationary phases can be substantially increased comparing to the common (isotropic) stationary phases. The proposed formation approach of the gradient stationary phase is reproducible and compatible with the capillary format or microchip format separations. It can be easily automated for the separation optimizations or mass production of the capillary columns or chips.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbbm.2006.10.011DOI Listing

Publication Analysis

Top Keywords

stationary phases
20
gradient stationary
16
continuous bed
12
bed monolithic
8
capillary liquid
8
liquid chromatography
8
chromatography capillary
8
capillary electrochromatography
8
separation media
8
capillary format
8

Similar Publications

Algebraic Depletion Interactions in Two-Temperature Mixtures.

Phys Rev Lett

December 2024

Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.

The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.

View Article and Find Full Text PDF

Oligonucleotides (ONs) are an increasingly popular category of molecules in the pharmaceutical landscape, particularly attractive for the treatment of genetic and rare diseases. However, analyzing these molecules presents significant challenges, due to their highly hydrophilic nature, multiple negative charges, and the presence of closely related impurities resulting from the complex solid-phase synthesis process. Ion pairing reverse-phase liquid chromatography (IP-RPLC) is the preferred technique for ONs analysis but is not ideal for mass spectrometry (MS) coupling.

View Article and Find Full Text PDF

Sequential separation of anti-diabetic drugs in the presence of melamine as impurity using chromatographic methods.

BMC Chem

January 2025

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Sharq El-Nile, Beni-Suef, 62511, Egypt.

The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase.

View Article and Find Full Text PDF

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Utilizing 4-Sulfonylcalix[4]arene as a Selective Mobile Phase Additive for the Capture of Methylated Peptides.

Anal Chem

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.

Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!