Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress, selective neuronal loss, and diminished activity of thiamine-dependent enzymes play a role in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. To further understand the major implications of thiamine deficiency (TD) in neuronal death, we induced TD during pregnancy and evaluated the effects on the offspring. The body and brain weights of pups from thiamine-deficient dams were significantly smaller than normal. Loss of neuronal viability was examined by trypan blue exclusion assay, and demonstrated increased cytotoxicity in primary cultures of TD neurons. Additionally, cerebellar cultures were exposed to thiamine-free cell culture medium to better explore the effects of thiamine withdrawal. Alterations in potassium current has previously been associated with the development of cell death. In this study, we examined the TD effects on delayed rectifier and A-type K+ channels, two well-known voltage-activated K+ channels involved in the regulation of action potential firing in cerebellar granule neurons. Current recordings were performed in cultured rat cerebellar granule neurons at day 7, using the whole-cell voltage-clamp technique. Our data demonstrate that thiamine deficiency provoked a significant decrease in the voltage-dependent K+ membrane conductance. Finally, TD markedly depressed the transient A-type K+ currents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2006.11.064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!