A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels. | LitMetric

Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels.

Brain Res

Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, #6627, Instituto de Ciências Biológicas, Bloco K4, Sala #167, Belo Horizonte-MG, Brazil.

Published: February 2007

Oxidative stress, selective neuronal loss, and diminished activity of thiamine-dependent enzymes play a role in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. To further understand the major implications of thiamine deficiency (TD) in neuronal death, we induced TD during pregnancy and evaluated the effects on the offspring. The body and brain weights of pups from thiamine-deficient dams were significantly smaller than normal. Loss of neuronal viability was examined by trypan blue exclusion assay, and demonstrated increased cytotoxicity in primary cultures of TD neurons. Additionally, cerebellar cultures were exposed to thiamine-free cell culture medium to better explore the effects of thiamine withdrawal. Alterations in potassium current has previously been associated with the development of cell death. In this study, we examined the TD effects on delayed rectifier and A-type K+ channels, two well-known voltage-activated K+ channels involved in the regulation of action potential firing in cerebellar granule neurons. Current recordings were performed in cultured rat cerebellar granule neurons at day 7, using the whole-cell voltage-clamp technique. Our data demonstrate that thiamine deficiency provoked a significant decrease in the voltage-dependent K+ membrane conductance. Finally, TD markedly depressed the transient A-type K+ currents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2006.11.064DOI Listing

Publication Analysis

Top Keywords

thiamine deficiency
12
neuronal death
8
cerebellar granule
8
granule neurons
8
thiamine
4
deficiency pregnancy
4
pregnancy leads
4
cerebellar
4
leads cerebellar
4
neuronal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!