Envenoming by the West African saw-scaled viper, Echis ocellatus resembles that of most vipers, in that it results in local blistering, necrosis and sometimes life-threatening systemic haemorrhage. While effective against systemic envenoming, current antivenoms have little or no effect against local tissue damage. The major mediators of local venom pathology are the zinc-dependant snake venom metalloproteinases (SVMPs). The high degree of structural and functional homology between SVMPs and their mammalian relatives the matrix metalloproteinases (MMPs) suggests that substrate/inhibitor interactions between these subfamilies are likely to be analogous. In this study, four recently developed MMP inhibitors (MMPIs) (Marimastat, AG-3340, CGS-270 23A and Bay-12 9566) are evaluated in addition to three metal ion chelators (EDTA, TPEN and BAPTA) for their ability to inhibit the haemorrhagic activities of the medically important E. ocellatus venom and one of its haemorrhagic SVMPs, EoVMP2. As expected, the metal ion chelators significantly inhibited the haemorrhagic activities of both whole E. ocellatus venom and EoVMP2, while the synthetic MMPIs show more variation in their efficacies. These variations suggest that individual MMPIs show specificity towards SVMPs and that their application to the neutralization of local haemorrhage may require a synthetic MMPI mixture, ensuring that a close structural component for each SVMP is represented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2006.11.020 | DOI Listing |
Front Immunol
January 2025
Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States.
While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratorio de Pediatria Clinica (LIM36), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
Introduction: Chemokines and their receptors are essential for leukocyte migration to several tissues, including human milk. Here, we evaluated the homing of T and B lymphocyte subsets to breast milk in response to ongoing respiratory infections in the nursing infant.
Methods: Blood and mature milk were collected from healthy mothers of nurslings with respiratory infections (Group I) and from healthy mothers of healthy nurslings (Group C).
Front Immunol
January 2025
Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States.
Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!