AI Article Synopsis

  • Environmental cues such as glucocorticoids, neurotrophic factors, and intracellular messengers significantly impact the expression of phenotypes in developing chromaffin cells and sympathetic neurons, with PNMT being specifically expressed in adrenergic chromaffin cells.
  • While PNMT expression is notably regulated by factors like dexamethasone, its induction can be hindered by substances like GDNF and cyclic AMP analogs, suggesting a complex interplay between differentiation signals and intrinsic cellular factors.
  • Understanding how these regulatory mechanisms work in models like mouse pheochromocytoma (MPC) cells may reveal important insights into the processes that control the adrenergic phenotype during development.

Article Abstract

Specific arrays and timing of environmental cues including glucocorticoids, neurotrophic factors and intracellular messengers influence phenotype expression in developing chromaffin cells or sympathetic neurons. Although the two lineages are closely related, only adrenergic chromaffin cells express phenylethanolamine N-methyltransferase (PNMT), the enzyme that synthesizes epinephrine, while neurons and noradrenergic chromaffin cells are PNMT-negative. It remains unclear to what extent the ability to express PNMT is determined by environmental cues versus intrinsic heterogeneity already present in ganglionic and adrenal precursors. Mouse pheochromocytoma (MPC) cell lines are a model for studying adrenergic differentiation. In two MPC lines that exhibit up to 1000-fold induction of PNMT mRNA by dexamethasone, pretreatment with glial cell line-derived neurotrophic factor (GDNF) and/or the cyclic AMP analog cpt-cAMP markedly blunts or abrogates PNMT inducibility. PNMT suppression occurs without apparent neuronal differentiation in one of the MPC lines and in normal adult mouse chromaffin cell cultures. Our results establish transcriptional suppression by cAMP as a mechanism for regulating PNMT expression in both normal and neoplastic mouse chromaffin cells. However, contrast between large increases in PNMT mRNA levels and low stimulation of promoter activity suggests that modulation of mRNA degradation also plays an important role. Clarification of mechanisms that regulate these two processes in MPC cells may provide insight into developmental mechanisms governing expression and maintenance of the adrenergic phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2006.11.013DOI Listing

Publication Analysis

Top Keywords

chromaffin cells
16
phenylethanolamine n-methyltransferase
8
environmental cues
8
differentiation mpc
8
mpc lines
8
pnmt mrna
8
mouse chromaffin
8
pnmt
7
chromaffin
5
cells
5

Similar Publications

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Heterozygosity for loss-of-function alleles of the genes encoding the four subunits of succinate dehydrogenase (SDHA, SDHB, SDHC, SDHD), as well as the SDHAF2 assembly factor predispose affected individuals to pheochromocytoma and paraganglioma (PPGL), two rare neuroendocrine tumors that arise from neural crest-derived paraganglia. Tumorigenesis results from loss of the remaining functional SDHx gene copy, leading to a cell with no functional SDH and a defective tricarboxylic acid (TCA) cycle. It is believed that the subsequent accumulation of succinate competitively inhibits multiple dioxygenase enzymes that normally suppress hypoxic signaling and demethylate histones and DNA, ultimately leading to increased expression of genes involved in angiogenesis and cell proliferation.

View Article and Find Full Text PDF

Flavonoids from as neuroprotective agents attenuate cerebral ischemia/reperfusion injury and via activating Nrf2.

Redox Rep

December 2025

School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China.

Objectives: Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!