Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.7% similarity) and Clostridium ramosum (96.6%). In contrast to these species, the isolate was devoid of alpha-galactosidase and -glucosidase and did not grow on maltose, melibiose, raffinose, rhamnose and trehalose. The hypothesis that strain SDG-Mt85-3Db represents a new bacterial species of the Clostridium cluster XVIII was confirmed by DNA-DNA hybridisation experiments. The G+C content of DNA of strain SDG-Mt85-3Db (30.7+/-0.8 mol%) was comparable with that of Clostridium butyricum, the type species of the genus Clostridium. The name Clostridium saccharogumia is proposed for strain SDG-Mt85-3Db (=DSM 17460T=CCUG 51486T). The second isolate, strain ED-Mt61/PYG-s6, was a mesophilic strictly anaerobic Gram-positive regular rod. Based on 16S rRNA gene sequence analysis, its nearest relatives were Clostridium amygdalinum (93.3%), Clostridium saccharolyticum (93.1%) and Ruminococcus productus (93.0%). The isolate differed from these species in its ability to dehydrogenate enterodiol. It also possessed alpha-arabinosidase and -galactosidase and had a higher G+C content of DNA (48.0 mol%). According to these findings, it is proposed to create a novel genus, Lactonifactor, and a novel species, Lactonifactor longoviformis, to accommodate strain ED-Mt61/PYG-s6. The type strain is DSM 17459T (=CCUG 51487T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.syapm.2006.02.003 | DOI Listing |
Syst Appl Microbiol
January 2007
Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 155, 14558 Nuthetal, Germany.
Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.
View Article and Find Full Text PDFAnaerobe
June 2006
Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 155, 14558 Nuthetal, Germany.
The human intestinal microbiota is necessary for the production of enterolignans from the dietary lignan secoisolariciresinol diglucoside (SDG). However, little is known about the bacteria that contribute to SDG conversion. Therefore, we aimed at describing the occurrence and activity of SDG metabolising bacteria.
View Article and Find Full Text PDFFEMS Microbiol Ecol
March 2006
Department of Gastrointestinal Microbiology, Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
The human intestinal microbiota is essential for the conversion of the dietary lignan secoisolariciresinol diglucoside (SDG) via secoisolariciresinol (SECO) to the enterolignans enterodiol (ED) and enterolactone (EL). However, knowledge of the species that catalyse the underlying reactions is scant. Therefore, we focused our attention on the identification of intestinal bacteria involved in the conversion of SDG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!