Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor.

Chem Biol

Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA.

Published: January 2007

The GlmS riboswitch is located in the 5'-untranslated region of the gene encoding glucosamine-6-phosphate (GlcN6P) synthetase. The GlmS riboswitch is a ribozyme with activity triggered by binding of the metabolite GlcN6P. Presented here is the structure of the GlmS ribozyme (2.5 A resolution) with GlcN6P bound in the active site. The GlmS ribozyme adopts a compact double pseudoknot tertiary structure, with two closely packed helical stacks. Recognition of GlcN6P is achieved through coordination of the phosphate moiety by two hydrated magnesium ions as well as specific nucleobase contacts to the GlcN6P sugar ring. Comparison of this activator bound and the previously published apoenzyme complex supports a model in which GlcN6P does not induce a conformational change in the RNA, as is typical of other riboswitches, but instead functions as a catalytic cofactor for the reaction. This demonstrates that RNA, like protein enzymes, can employ the chemical diversity of small molecules to promote catalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847778PMC
http://dx.doi.org/10.1016/j.chembiol.2006.12.005DOI Listing

Publication Analysis

Top Keywords

glms ribozyme
12
catalytic cofactor
8
glms riboswitch
8
glcn6p
6
glms
5
structural investigation
4
investigation glms
4
ribozyme
4
ribozyme bound
4
bound catalytic
4

Similar Publications

Optimized periphery-core interface increases fitness of the Bacillus subtilis glmS ribozyme.

Nucleic Acids Res

November 2024

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

Like other functional RNAs, ribozymes encode a conserved catalytic center supported by peripheral domains that vary among ribozyme sub-families. To understand how core-periphery interactions contribute to ribozyme fitness, we compared the cleavage kinetics of all single base substitutions at 152 sites across the Bacillus subtilis glmS ribozyme by high-throughput sequencing (k-seq). The in vitro activity map mirrored phylogenetic sequence conservation in glmS ribozymes, indicating that biological fitness reports all biochemically important positions.

View Article and Find Full Text PDF

The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein.

View Article and Find Full Text PDF

Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen prohibitin "PHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PHB2 in infected red blood cells (iRBCs), respectively, inhibit PHB2-Hsp70A1A interaction leading to invasion inhibition.

View Article and Find Full Text PDF

Background: possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in . However, its vulnerability as an antimalarial target has not been assessed.

View Article and Find Full Text PDF

Resolving isomeric analytes is challenging given their physical similarity - making chromatographic resolution difficult, and their identical masses - making simple mass resolution impossible. MS/MS data provides a means to resolve isomeric analytes if their MS/MS intensity profiles are sufficiently different. Glucosamine-6-phosphate (GlcN-6P) and glucosamine-1-phosphate (GlcN-1P) are early bacterial cell wall intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!