Performance of phenotypic assays and replication capacity assays require normalization of virus input. Therefore, quantitation of HIV-1 in supernatants to inoculate cell cultures is an important step. Since the gold standard for the determination of infectivity, the tissue culture infectious dose 50% (TCID50) is time-consuming, several other methods are in use. This study evaluated methods for the quantitation of drug resistant viruses in cell culture supernatants. The compared methods were based on the detection of viral structural components like genomic RNA or p24 antigen (CA-p24) (particle-based), the determination of reverse transcriptase (RT) activity, and methods based on the detection of viral infectivity like LTR-induced beta-galactosidase (beta-gal) activity and the TCID50 (infectivity-based). Significant correlations were observed between beta-gal activity and TCID50, and between CA-p24 and viral RNA. RT activity did not correlate with any other method. However, RT activity correlated significantly with infectivity when non-resistant subtype-B isolates were analyzed. In contrast to viral infectivity, CA-p24 exhibited a long half life and accumulated in cell culture, resulting in decreasing ratios of infectious virions to CA-p24 over time. As a consequence, relative replication capacities of drug resistant viruses were only determined reliably if the input virus was normalized according to infectivity. In conclusion, RT activity seems to be feasible for non-resistant subtype-B viruses but may be of limited use for non-B subtypes and for drug resistant viruses. Methods determining infectivity are most suitable for quantitation of cell culture inocula, whereas particle-based assays are more appropriate for quantitation of virus production during an experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2006.11.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!