Targeting of gene vectors to liver hepatocytes could offer the opportunity to cure various acquired and inherited diseases. Efficient gene delivery to the liver parenchyma has been obscured from efficient targeting of hepatocytes. Here we show that the thyroid hormone, triiodothyronine (T3), can be used to improve the gene transfer efficiency of nonviral gene vectors to hepatocytes in vitro and to the liver of mice in vivo. T3 conjugated to the distal ends of fluorescent labeled PEG-g-dextran resulted in T3-specific cellular endosomal uptake into the hepatocellular cell line HepG2. PEG-g-PEI graft copolymers with increasing molar PEG-ratios were synthesized, complexed with plasmid DNA, and transfected into HepG2 or HeLa cells. Gene transfer efficiency decreased as the number of PEG blocks increased. T3 conjugation to PEI and the distal ends of PEG blocks resulted in T3 specific gene transfer in HepG2 cells as evidenced by reduction of gene transfer efficiency after pre-incubation of cells with excess of T3. In vivo application of T3-PEG-g-PEI based gene vectors in mice after tail vein injection resulted in a significantly 7-fold increase of gene expression in the liver compared with PEG-g-PEI based gene vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2006.12.011 | DOI Listing |
J Nanobiotechnology
December 2024
National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Up to 50% of individuals with uveal melanoma (UM), a frequent cancer of the eye, pass away from metastases. One of the major challenges in treating UM is the role of receptor tyrosine kinases (RTKs), which mediate the epithelial-mesenchymal transition (EMT) of tumors. RTKs are involved in binding multiple growth factors, leading to angiogenesis and vasculogenic mimicry (VM) phenomena.
View Article and Find Full Text PDFBiotechnol Lett
December 2024
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.
View Article and Find Full Text PDFPlant Dis
December 2024
Nature Research Centre, Laboratory of Plant Pathology, Vilnius, Lithuania;
European blueberries ( L.) can be found across the Northern Hemisphere, particularly in cool, temperate forests. These shrubs produce dark blue berries that are rich in vitamins, antioxidants, and anthocyanins making them valuable for both human consumption and food supplements.
View Article and Find Full Text PDFHum Gene Ther
December 2024
Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.
View Article and Find Full Text PDFPlant Sci
December 2024
Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, Anhui, China. Electronic address:
The shift from vegetative to reproductive growth is an important developmental transition that affects flowering and maturation, architecture, and ecological adaptability in plants. The florigen-antiflorigen system universally controls flowering and plant architecture, and changes to the ratio of these components alter this transition and disrupt growth. The genes FT (FLOWERING LOCUS T), encoding the florigen protein FT, and CETS [CENTRORADIALIS (CEN)/TERMINAL FLOWER1 (TFL1)/SELF-PRUNING (SP)], encoding antiflorigen proteins, have opposing roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!