An analytical algorithm is described for converting planar scintigraphic images of aerosol distributions in the lungs to an equivalent three-dimensional (3D) representation. The recovery of volumetric information should benefit regional quantification. The technique has been validated using simulated planar images of eleven known aerosol distributions in ten realistic lungs. Global and regional 3D parameters, such as the total activity deposition (A), the penetration index (PI) and the relative penetration index (rPI), were quantified on the planar images and on their 3D representation. Random and systematic errors of the estimation were measured. Finally, the performance of planar imaging was compared with that of single-photon emission computed tomography (SPECT). SPECT images were simulated for the same aerosol distributions in the same subjects and quantified for A, PI, and rPI. The systematic errors in A, PI and rPI obtained from planar imaging were 8.9%, 64.8%, and 54.1%, respectively, using the two-dimensional (2D) analysis; they improved significantly to 4.4%, 19.0%, and 25.5% with the 3D analysis (p < 0.01). The corresponding values for SPECT were 5.2%, 9.8%, and 15.7%, significantly better for PI and rPI (p < 0.01). The random errors of A were similar for all techniques being about 5%; those of PI and rPI measurements were significantly higher for planar imaging (

Download full-text PDF

Source
http://dx.doi.org/10.1089/jam.2006.19.565DOI Listing

Publication Analysis

Top Keywords

planar imaging
16
aerosol distributions
12
planar images
8
systematic errors
8
planar
7
rpi
5
analytical technique
4
technique recover
4
recover third
4
third dimension
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!