Continuous monitoring of particle emissions during showering.

J Air Waste Manag Assoc

Environmental Assessment and Exposure Department, Battelle, Columbus, OH, USA.

Published: December 2006

Particle formation from showering may be attributed to dissolved mineral aerosols remaining after evaporation of micron-sized satellite droplets produced by the showerhead or from splashing of larger shower water droplets on surfaces. Duplicate continuous particle monitors measured particle size distributions in a ventilated residential bathroom under various showering conditions, using a full-size mannequin in the shower to simulate splashing effects during showering. Particle mass concentrations were estimated from measured shower particle number densities and used to develop emission factors for inhalable particles. Emission source strengths of 2.7-41.3 microg/ m3/min were estimated under the various test conditions using residential tap water in Columbus, OH. Calculated fine particulate matter (PM2.5) concentrations in the bathroom reached several hundred micrograms per cubic meter; calculated coarse particulate matter (PM10) levels approached 1000 microg/m3. Rates of particle formation tended to be highest for coarse shower spray settings with direct impact on the mannequin. No consistent effects of water temperature, water pressure, or spray setting on overall emission rates were apparent, although water temperature and spray setting did have an effect when varied within a single shower sampling run. Salt solutions were injected into the source water during some tests to assess the effects of total dissolved solids on particle emission rates. Injection of salts was shown to increase the PM2.5 particle formation rate by approximately one third, on average, for a doubling in tap water-dissolved solids content; PM10 source strengths approximately doubled under these conditions, because very few particles >10 microm were formed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2006.10464571DOI Listing

Publication Analysis

Top Keywords

particle formation
12
particle
9
showering particle
8
source strengths
8
particulate matter
8
water temperature
8
spray setting
8
emission rates
8
water
6
shower
5

Similar Publications

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.

View Article and Find Full Text PDF

Quercetin (Que) is a polyhydroxy flavonoid with strong inhibitory activity against cancer cells. However, the poor water solubility and low bioavailability of Que. limit its application in the functional food industry.

View Article and Find Full Text PDF

Augmented silver sulfadiazine nanostructured lipid carriers impregnated collagen sponge for promoting burn wound healing.

Int J Biol Macromol

January 2025

Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:

Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!