In response to feeding larvae of the Mediterranean climbing cutworm (Spodoptera littoralis), leaves of the lima bean (Phaseolus lunatus) produce fatty acid-derived signaling compounds (oxylipins). The major products are the phytohormones jasmonic acid and its biosynthetic precursor 12-oxophytodienoic acid (OPDA), along with 13-hydroxy-12-oxooctadeca-9,15-dienoic acid, 9-hydroxy-12-oxooctadeca-10,15-dienoic acid (alpha- and gamma-ketol), as well as unsaturated aldehydes. Oxylipin production is highest at the feeding zone of the insect and decreases with distance from the damaged area. Accordingly, the feeding insect experiences high local concentrations of oxylipins, which are taken up into the alimentary canal and are finally excreted with the feces. In contrast to most other oxylipins, OPDA was not detectable in the insect's gut; instead the structurally related tetrahydrodicranenone B (iso-OPDA) was identified. Feeding experiments with deuterium-labeled OPDA proved that the isomerization is catalyzed by an enzyme from the insect's gut tissue. The phenomenon appears to be widespread among Lepidopteran larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200600379 | DOI Listing |
Plant Physiol
December 2024
Laboratory of Growth Regulators, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-77900, Czech Republic.
Jasmonates are a family of oxylipin phytohormones regulating plant development and growth and mediating "defense versus growth" responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood.
View Article and Find Full Text PDFPeerJ
November 2024
Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
Leaf stalk-stem angle is an important agronomic trait influencing melon architecture, photosynthetic efficiency, and crop yield. However, the mechanisms governing leaf stalk-stem angle, particularly in melon, are not well understood. In this study, we explored the comparative transcriptome in the expanded architecture line Y164 and the compact plant architecture line Z151 at 30 days after pollination.
View Article and Find Full Text PDFPlant Physiol
December 2024
Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain.
Jasmonates (JAs) are important phytohormones that regulate plant tolerance to biotic and abiotic stresses, and developmental processes. Distinct JAs in different plant lineages activate a conserved signaling pathway that mediates these responses: dinor-12-oxo-phytodienoic acid (dn-OPDA) isomers in bryophytes and lycophytes, and JA-Ile in most vascular plants. In many cases, the final responses triggered by these phytohormones depend on the accumulation of specialized metabolites.
View Article and Find Full Text PDFFront Plant Sci
October 2024
Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China.
Introduction: cv. 'Chunhongtangju' was mutated from Mandarin 'Shatangju', which has been identified as a new citrus variety. Mandarin 'Chunhongtangju' fruits were late-ripening for about two months than Mandarin 'Shatangju'.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
A primary precursor of jasmonates, 12-oxo-phytodienoic acid (OPDA), is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward sulfur assimilation in the chloroplasts, incorporating sulfide into cysteine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!