Effect of lanthanum ions (La3+) on ferritin-regulated antioxidant process under PEG stress.

Biol Trace Elem Res

Key Laboratory of Arid and Grassland Agroecology of Ministry of Edocation, Lanzhou University, Lanzhou 730000, People's Republic of China.

Published: November 2006

The physiological effects of lanthanum(III) ions on the ferritin-regulated antioxidant process were studied in wheat (Triticum aestivum L.) seedlings under polyethylene glycol (PEG) stress. Treatment with 0.1 mM La3+ resulted in increased levels of chlorophyll, carotenoid, proline, ascorbate, and reduced glutathione. The activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and peroxidase were also increased after La3+ treatment. Treatment with La3+ seems to enhance the capacity of the reactive oxygen species scavenging system, affect the Fe2+ and Fe3+ electron-transfer process in ferritin, and restrain the formation of hydroxyl radical (OH.), alleviating the oxidative damage induced by PEG stress.

Download full-text PDF

Source
http://dx.doi.org/10.1385/BTER:113:2:193DOI Listing

Publication Analysis

Top Keywords

peg stress
12
ferritin-regulated antioxidant
8
antioxidant process
8
treatment la3+
8
lanthanum ions
4
la3+
4
ions la3+
4
la3+ ferritin-regulated
4
process peg
4
stress physiological
4

Similar Publications

In Vitro Assessment of Chitosan-PEG Hydrogels Enriched with MSCs-Exosomes for Enhancing Wound Healing.

Macromol Biosci

January 2025

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, Brno, 61600, Czech Republic.

Regenerating skin tissue remains a major challenge in medical science, especially due to the risk of scarring and prolonged healing, which becomes even more complicated in people with diabetes. Recent advancements have led to the creation of therapeutic dressings incorporating drug-delivery systems to tackle these issues. Exosomes (Exos) derived from mesenchymal stem cells (MSCs) have gained significant attention for mediating therapy without directly using cells, thanks to their natural anti-inflammatory and tissue repair properties mirroring those of MSCs.

View Article and Find Full Text PDF

Graft-to/Graft-From Synthesis of Janus Graft Copolymers for Bottlebrush Polymer Electrolytes.

Macromol Rapid Commun

January 2025

Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Janus graft copolymers, which combine the characteristics of block and graft copolymers, have been used in the fields of reaction catalysis, surface modification, and drug delivery, but their applications in lithium batteries have rarely been reported. Herein, Janus graft copolymers with polyethylene glycol (PEG) and polystyrene (PS) side chains are synthesized by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) methods and doped with lithium salts to fabricate Janus bottlebrush polymer electrolytes (PEG-J-PS). The PEG side chains of the brush polymers impart good ion-conducting properties to the electrolytes, while the PS side chains improve the mechanical strength and thermal and chemical stability of the electrolytes.

View Article and Find Full Text PDF

Objective: This study aims to explore how sociodemographic, psychological, and quality of life factors impact dual-task performance among elderly individuals in Iraq.

Methods: This cross-sectional study included 384 healthy community-dwelling participants aged 60 years and over, recruited from Najaf, Iraq. Data were collected using the Depression Anxiety Stress Scales-21 (DASS-21), Mindful Attention Awareness Scale (MAAS), and the World Health Organization Quality of Life Brief Form (WHOQOL-BREF).

View Article and Find Full Text PDF

Genome-wide analysis of the SPL family in Zanthoxylum armatum and ZaSPL21 promotes flowering and improves salt tolerance in transgenic Nicotiana benthamiana.

Plant Mol Biol

January 2025

Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.

Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.

View Article and Find Full Text PDF

ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.

Plant Cell Environ

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.

Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!