The 5'-cloverleaf of the picornavirus RNA genome is essential for the assembly of a ribonucleoprotein replication complex. Stem-loop D (SLD) of the cloverleaf is the recognition site for the multifunctional viral protein 3Cpro. This protein is the principal viral protease, and its interaction with SLD also helps to position the viral RNA-dependent RNA polymerase (3Dpol) for replication. Human rhinovirus-14 (HRV-14) is distinct from the majority of picornaviruses in that its SLD forms a cUAUg triloop instead of the more common uYACGg tetraloop. This difference appears to be functionally significant, as 3Cpro from tetraloop-containing viruses cannot bind the HRV-14 SLD. We have determined the solution structure of the HRV-14 SLD using NMR spectroscopy. The structure is predominantly an A-form helix, but with a central pyrimidine-pyrimidine base-paired region and a significantly widened major groove. The stabilizing hydrogen bonding present in the uYACGg tetraloop was not found in the cUAUg triloop. However, the triloop uses different structural elements to present a largely similar surface: sequence and underlying architecture are not conserved, but key aspects of the surface structure are. Important structural differences do exist, though, and may account for the observed cross-isotype binding specificities between 3Cpro and SLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800519 | PMC |
http://dx.doi.org/10.1261/rna.313707 | DOI Listing |
Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR.
View Article and Find Full Text PDFProtein Expr Purif
November 2024
Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida Konoe-cho, Kyoto, 606-8501, Japan.
Automation of protein purification methods can increase researchers' efficiency in life sciences. However, currently reported automated protein purification methods require cost-intensive fast protein liquid chromatography systems, such as ÄKTA pure and ÄKTA explorer, without any reported application to the more cost-efficient entry-level system, ÄKTA go. To fill this gap, here we propose a fast, efficient, and versatile automated protein purification strategy for the ÄKTA go.
View Article and Find Full Text PDFMicroorganisms
November 2023
Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil.
BMC Microbiol
November 2023
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Human rhinovirus B (HRV-B) is a major human viral pathogen that can be responsible for various kinds of infections. Due to the health risks associated with HRV-B, it is therefore crucial to explore a rapid, specific, and sensitive method for surveillance. Herein, we exploited a novel detection method for HRV-B by combining reverse-transcription recombinase polymerase amplification (RT-RPA) of nucleic acids isothermal amplification and the trans-cleavage activity of Cas12a.
View Article and Find Full Text PDFViruses
July 2023
Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria.
Rhinoviruses (RV) are one of the most common causative agents of respiratory infections, with significant socioeconomic impact. RV infections are not notifiable in Bulgaria, and little is known about the different RV genotypes circulating in the country. This study aims to investigate the diversity of RV genotypes that were circulating in Bulgaria in the period 2018-2021 in samples from ILI/ARI patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!