It is poorly understood how oxidized LDL (oxLDL) promotes monocyte dynamics in transendothelial migration (TEM) in atherogenesis. We developed an in vitro 3D-live-single cell TEM assay system with subendothelial oxLDL embedded in ultra-thin collagen gels, mimicking subendothelial oxLDL accumulation in vivo. With dividing monocyte dynamics into three stages (1: adhesion on endothelium, 2: invasion and 3: complete transmigration below endothelium), we analyzed the stage transition dynamics of individual living human monocytes. OxLDL did not enhance initial monocyte adhesion to endothelium (stage 1), but it specifically primed adherent monocytes to start invasion (stage 1-->2). Once invasion started, it had no effect thereafter on monocyte stage transition (stage 2-->3). OxLDL upregulated PECAM-1 and downregulated VE-cadherin on endothelial junctions without monocyte addition, both of which could promote monocyte entry by enhanced homophilic binding to monocyte PECAM-1, and by disrupted junctional barrier, respectively. Meanwhile, monocyte speed at neither locomotion on endothelium (stage 1) nor subendothelial migration (stage 3) was altered by oxLDL. These data indicate that before monocyte adhesion, endothelial junctions changed their conformation to more monocyte-acceptable state in response to oxLDL, resulting the stage-specific promotion of monocyte TEM (stage 1-->2; initiation of invasion) with no enhancement of its initial adhesion or migration speed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.atherosclerosis.2006.11.029 | DOI Listing |
Brain
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan.
Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
Int Angiol
December 2024
Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.
View Article and Find Full Text PDFPharmaceutics
January 2025
Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.
Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!