The development of synthetic processes for oxide nanomaterials is an issue of considerable topical interest. While a number of chemical methods are available and are extensively used, the collaborations are often energy intensive and employ toxic chemicals. On the other hand, the synthesis of inorganic materials by biological systems is characterized by processes that occur at close to ambient temperatures and pressures, and at neutral pH (examples include magnetotactic bacteria, diatoms, and S-layer bacteria). Here we show that nanoparticulate magnetite may be produced at room temperature extracellularly by challenging the fungi, Fusarium oxysporum and Verticillium sp., with mixtures of ferric and ferrous salts. Extracellular hydrolysis of the anionic iron complexes by cationic proteins secreted by the fungi results in the room-temperature synthesis of crystalline magnetite particles that exhibit a signature of a ferrimagnetic transition with a negligible amount of spontaneous magnetization at low temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200500180 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg.
Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China. Electronic address:
Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.
View Article and Find Full Text PDFEnviron Res
January 2025
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution.
View Article and Find Full Text PDFHum Immunol
January 2025
Department of Urology, Jiaxing Second Hospital, Jiaxing 314000, China. Electronic address:
Previous studies have revealed the essential role of lysosomes in human diseases, including cancer. However, there is a lack of in-depth systematic research on its function in kidney renal clear cell carcinoma (KIRC). In this project, we collected the public dataset of KIRC and selected lysosomal genes tightly linked with survival.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!