Reaction of [(2-alkyloxy)methyl]-1,4-dimethoxybenzene 10 (alkyl=butyl, hexyl, decyl, tridecyl, tetradecyl, hexadecyl, and octadecyl) with ceric ammonium nitrate in order to produce p-benzoquinones (=cyclohexa-2,5-diene-1,4-diones) afforded 5-[(alkyloxy)methyl]-2-(4-formyl-2,5-dimethoxyphenyl)benzo-1,4-quinones 12a-12g in yields that varied from 46 to 97%, accompanied by 2-[(alkyloxy)methyl]benzo-1,4-quinones 11a-11g in only small quantities (< or =5%). These quinones resemble the natural phytotoxic compound sorgoleone, found in Sorghum bicolor. This reaction exemplifies a general procedure for the synthesis of novel aryl-substituted p-benzoquinones. The selective effects of compounds 12a-12g, at the concentration of 5.5 ppm, on the growth of Cucumis sativus, Sorghum bicolor, Euphorbia heterophylla, and Ipomoea grandifolia were evaluated. All compounds caused some inhibition upon the aerial parts and root growth of the tested plants. The most active compound, 2-(4-formyl-2,5-dimethoxyphenyl)-5-[(tridecyloxy)methyl]-benzo-1,4-quinone (12d), caused between 3 and 18%, and 12 and 29% inhibition on the roots and aerial parts development of Cucumis sativus and Sorghum bicolor, respectively, and between 77 and 85%, and 34 and 52% inhibition on the roots and aerial parts growth of Euphorbia heterophylla and Ipomoea grandifolia, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.200690059DOI Listing

Publication Analysis

Top Keywords

sorghum bicolor
12
aerial parts
12
cucumis sativus
8
sativus sorghum
8
euphorbia heterophylla
8
heterophylla ipomoea
8
ipomoea grandifolia
8
inhibition roots
8
roots aerial
8
synthesis phytogrowth-inhibitory
4

Similar Publications

Background: Subtropical forest plant diversity, characterized by a wide range of species adapted to seasonal variations, is vital for sustaining ecological balance, supporting diverse wildlife, and providing critical ecosystem services such as carbon sequestration and soil stabilization. The Changa Manga Forest, an ecologically rich area with varied vegetation, was analyzed to understand the intricate relationship between plant diversity and environmental factors. This study investigates the diversity patterns, vegetation structure, and environmental influences on forest biodiversity.

View Article and Find Full Text PDF

Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.

View Article and Find Full Text PDF

Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation.

BioTech (Basel)

December 2024

Department of Environmental Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan.

Sorghum distillers grains (SDGs) produced from a sorghum liquor company were used for generating biohydrogen via dark fermentation at pH 4.5-6.5 and 55 °C with a batch test, and the biohydrogen electricity generation potential was evaluated.

View Article and Find Full Text PDF

Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review.

J Toxicol

December 2024

Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia.

Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth.

View Article and Find Full Text PDF

Sorghum is a major ingredient used in the production of complementary foods in Kenya's drylands, particularly in areas like Kerio Valley. However, it is known to be susceptible to aflatoxin and fumonisin contamination, which have adverse effects on human health. The current study aimed to assess the levels of aflatoxin and fumonisin in sorghum kernels and flour from Kerio Valley and to investigate whether fermentation (spontaneous or innoculum facilated) could reduce the levels of toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!