Here, we report the aquaporin 2 (AQP2) mutational analysis of a patient with nephrogenic diabetes insipidus heterozygote due to two novel missense mutations. Direct sequencing of DNA in the male patient revealed that he was compound heterozygote for two mutations in the AQP2 gene: a thymine-to-adenine transversion at position 450 (c.450T>A) in exon 2 and a guanine-to-thymine at nucleotide position 643 (c.643G>T) in exon 4. The double heterozygous 450T>A and 643G>T transversion causes the amino acid substitution D150E and G215C. Direct sequencing of exons 2 and 4 of the AQP2 gene from each of the parents revealed that the c.450T>A mutation was inherited from the father while the c.643G>T mutation was inherited from the mother. Analysis of AQP2 excretion demonstrated that no AQP2 was detectable in the urine of the proband, whereas normal AQP2 levels were measured in both parents. When expressed in renal cells, both proteins were retarded in the endoplasmic reticulum and no redistribution was observed after forskolin stimulation. Of note, homology modeling revealed that the two mutations involve two highly conserved residues providing important clues about the role of the wt residues in AQP2 stability and function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000098136DOI Listing

Publication Analysis

Top Keywords

aqp2 gene
12
novel missense
8
missense mutations
8
aqp2
8
mutations aqp2
8
nephrogenic diabetes
8
diabetes insipidus
8
direct sequencing
8
mutation inherited
8
characterization novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!