Understanding vascular pathologies requires insight in the structure and function, and, hence, an imaging technique combining subcellular resolution, large penetration depth, and optical sectioning. We evaluated the applicability of two-photon laser-scanning microscopy (TPLSM) in large elastic and small muscular arteries under physiological conditions. Elastic (carotid) and muscular (uterine, mesenteric) arteries of C57BL/6 mice were mounted in a perfusion chamber. TPLSM was used to assess the viability of arteries and to visualize the structural components elastin, collagen, nuclei, and endothelial glycocalyx (EG). Functionality was determined using diameter changes in response to noradrenaline and acetylcholine. Viability and functionality were maintained up to 4 h, enabling the assessment of structure-function relationships. Structural vessel wall components differed between elastic and muscular arteries: size (1.3 vs. 2.1 microm) and density (0.045 vs. 0.57 microm(-2)) of internal elastic lamina fenestrae, smooth muscle cell density (3.50 vs. 1.53 microm(-3)), number of elastic laminae (3 vs. 2), and adventitial collagen structure (tortuous vs. straight). EG in elastic arteries was 4.5 microm thick, covering 66% of the endothelial surface. TPLSM enables visualization and quantification of subcellular structures in vital and functional elastic and muscular murine arteries, allowing unraveling of structure-function relationships in healthy and diseased arteries.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000098259DOI Listing

Publication Analysis

Top Keywords

elastic muscular
12
muscular arteries
12
elastic
8
arteries
8
subcellular resolution
8
structure-function relationships
8
muscular
5
two-photon microscopy
4
microscopy vital
4
vital murine
4

Similar Publications

A neuromechanics solution for adjustable robot compliance and accuracy.

Sci Robot

January 2025

Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.

Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective.

View Article and Find Full Text PDF

New connective tissue structure of the wrist area - research on fetal material.

Folia Morphol (Warsz)

January 2025

Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland.

The correct function of the upper limb depends on the cooperation and coordination of the muscular and skeletal systems as well as the connective tissue elements present in it. Connective tissue forms fascia, connective tissue membranes and ligaments. Connective tissue mostly develops from the mesenchyme.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is associated with osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and accumulation of arterial calcifications (ACs). Metformin (MET) inhibits this transdifferentiation in vitro. Here, we evaluate the in vivo efficacy of oral MET to reduce AC in a model of MetS.

View Article and Find Full Text PDF

Over the past 20-30 years, numerous studies have expanded our understanding of the connective components within the human musculoskeletal system. The term "fascia" and, more specifically, the "fascial system" encompass a variety of connective tissues that perform multiple functions. Given the extensive scope of the topic of fascia and the fascial system, which cannot be fully addressed in a single article, this work will focus specifically on the role of fascia in tension transmission (mechanotransduction).

View Article and Find Full Text PDF

Background: In this study, we aimed to evaluate the viscoelastic properties of the superficial back muscles of adolescent idiopathic scoliosis patients with Lenke Type 1A and 1B curves compared to their healthy peers.

Methods: 20 participants with adolescent idiopathic scoliosis and 20 healthy peers were evaluated. Cobb angle was recorded for scoliosis participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!