Alpha-conotoxins, neurotoxic peptides from poisonous Conus marine snails, can be subdivided into several groups targeting distinct subtypes of nicotinic acetylcholine receptors (nAChRs). Such alpha-conotoxins as, for example, GI, MI, or SIA potently block muscle-type nAChRs from muscles and from the electric organ of Torpedo ray, whereas others target distinct neuronal nAChRs: alpha-conotoxins ImI and PnIB block pentaoligomeric alpha7 nAChRs, and alpha-conotoxins MII or PnIA inhibit heteromeric nAChRs made of combinations of alpha3 or alpha6 subunits with beta2 subunit. alpha-Conotoxins interact with N-terminal extracellular ligand-binding domains of nAChRs and are indispensable tools for distinguishing various subtypes of AChRs at normal and pathological states. Although many alpha-conotoxins have been isolated from Conus venoms, there is still a great need in more potent and selective tools, which in principle can be obtained by design and synthesis of novel alpha-conotoxin analogs.

Download full-text PDF

Source
http://dx.doi.org/10.1385/JMN:30:1:77DOI Listing

Publication Analysis

Top Keywords

nachrs alpha-conotoxins
12
alpha-conotoxin analogs
8
alpha-conotoxins
6
nachrs
6
analogs enhanced
4
enhanced affinity
4
affinity nicotinic
4
nicotinic receptors
4
receptors acetylcholine-binding
4
acetylcholine-binding proteins
4

Similar Publications

Molecular determinants of the selectivity and potency of α-conotoxin Vc1.1 for human nicotinic acetylcholine receptors.

J Biol Chem

November 2024

Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia. Electronic address:

The α-conotoxins (α-Ctxs) are short, disulfide-rich peptides derived from the venom of the Conus marine snails, primarily acting as antagonists of nicotinic acetylcholine receptors (nAChRs). Specifically, α-Ctx Vc1.1, a 16-amino acid peptide from Conus victoriae, competitively antagonizes non-muscle nAChRs, inhibits nicotine-induced currents in bovine chromaffin cells, and alleviates neuropathic pain in rat models.

View Article and Find Full Text PDF

Machine Learning Framework for Conotoxin Class and Molecular Target Prediction.

Toxins (Basel)

November 2024

Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Conotoxins are small and highly potent neurotoxic peptides derived from the venom of marine cone snails which have captured the interest of the scientific community due to their pharmacological potential. These toxins display significant sequence and structure diversity, which results in a wide range of specificities for several different ion channels and receptors. Despite the recognized importance of these compounds, our ability to determine their binding targets and toxicities remains a significant challenge.

View Article and Find Full Text PDF

Development of an Intravenously Stable Disulfide-Rich Peptide for the Treatment of Chemotherapy-Induced Neuropathic Pain.

J Med Chem

November 2024

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.

α-conotoxins (α-Ctxs), a class of disulfide-rich conopetides, are excellent drug leads due to their small size, high selectivity, and potency for specific membrane receptors and ion channels involved in pain transmission. However, their high susceptibility to proteolytic degradation limits their therapeutic potential. In this study, we designed and synthesized a series of conformationally stable analogues of α-Ctx Mr1.

View Article and Find Full Text PDF

The α3β4 nAChR tissue distribution identified by fluorescent α-conotoxin [D11A]LvIA.

Int J Biol Macromol

November 2024

Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China. Electronic address:

α3β4, a vital subtype of neuronal nicotinic acetylcholine receptors (nAChRs), is widely distributed in the brain, ganglia, and adrenal glands, associated with addiction and neurological diseases. However, the lack of specific imaging tools for α3β4 nAChRs has hindered the investigation of their tissue distribution and functions. [D11A]LvIA, a peptide derived from marine cone snails, demonstrates high affinity and potency for α3β4 nAChRs, making it a valuable pharmacological tool for studying this receptor subtype.

View Article and Find Full Text PDF

N-Terminal Capping of the αO-Conotoxin Analogue GeX-2 Improves the Serum Stability and Selectivity toward the Human α9α10 Nicotinic Acetylcholine Receptor.

J Med Chem

October 2024

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.

α9α10 nicotinic acetylcholine receptors (nAChRs) are a promising nonopioid analgesic target, with α9α10 nAChR antagonists showing efficacy against chemotherapy-induced hyperalgesia and allodynia. GeX-2, a potent analgesic conotoxin antagonist of α9α10 nAChRs, has limited serum stability. This study improved GeX-2 stability by capping its N-terminal with fatty acids or polyethylene glycol chains, which enhanced its serum stability but eliminated activity at G protein-coupled γ-aminobutyric acid type B (GABA) receptor-coupled Ca2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!