Muscular and neuronal nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels and contain either two or five binding sites for acetylcholine (ACh). Binding of ACh molecules on the nAChR will trigger the fast opening of the channel and subsequent slow desensitization process. Neuronal alpha7 nicotinic receptors are made up of five identical subunits and possess five binding sites for ACh; this raises the question of how many sites must be occupied before channel opening. However, the effect of each ligand binding on gating is difficult to assess because of the reversible aspect of ligand binding at each site. One solution is to photochemically tether agonists to their binding sites. Such methodology has been applied elegantly and successfully on the homotetrameric cyclic-nucleotide-gated channels to evaluate the functional effects of each ligand binding on gating (Ruiz and Karpen, 1997). We therefore decided to develop a similar approach on Torpedo and neuronal alpha7 nAChRs with the photoactivatable agonist AC5 to investigate the effect of binding site occupancy on allosteric transitions of the receptor. In the dark, AC5 (see structure below) evokes robust currents on oocytes expressing Torpedo nAChR, displaying maximal amplitude comparable to ACh, with EC50 = 1.2 microM (Mourot et al., 2005). When the voltage-clamp oocyte was exposed to UV light in the presence of 30 microM AC5 for 50 s, there was a prolonged activation of the Torpedo nAChR, not reversible by washing, but inhibited by the noncompetitive blockers tetracaine and proadifen (see structure below). Both UV light and AC5 are required for this effect. However, further studies are required to determine whether the gradual decrease of the inward current reflects a slow desensitization process. AC5 is thus a potent photoactivatable agonist of the nAChR, which is able, upon UV irradiation, to incorporate covalently into the ACh-binding sites and to prolong activation of the nAChR. By extending this methodology to patch-clamp experiments, we will be able to incorporate one or several AC5s covalently into the muscular and neuronal nAChR at the single-channel level. Such study will help us understand the observed cooperative effect of gating and will contribute decisively to the controversial concerted vs sequential models for nAChR allosteric transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/JMN:30:1:3 | DOI Listing |
iScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
Mol Ther Methods Clin Dev
March 2025
Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.
Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins.
View Article and Find Full Text PDFACS Omega
January 2025
School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!