Amphotericin B (AmB, 1) is known to assemble together and form an ion channel across biomembranes, by which the drug presumably exerts its antimicrobial activity. To access the whole architecture of this channel assemblage, the understanding of binary interaction between AmB molecules is of prime importance because the dimeric interaction is the basis of the assemblage. In this context, we have recently reported covalently conjugated AmB dimers such as 2 and 3 with a long linker, which show prominent hemolytic potency and ion-channel activity. To evaluate the effect of the length and hydrophilicity of linker parts on the activity, we prepared new dimers bearing tartarate linkages (4 and 5). Especially, 5 exhibited potent hemolytic activity (EC50, 0.03 microM) surpassing those of AmB, 2, and 3. Measurements of UV and CD spectra of 5 in liposomes indicated that AmB portions of 5 could adopt appropriate arrangements in molecular assemblage in spite of the short linkage, and also indicated that the assemblage formed by 5 appeared more stable than AmB. These short-tethered dimers are expected to be a promising tool to reveal the mechanism of dimeric interaction in the ion channel formed by AmB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.200490030 | DOI Listing |
Chem Sci
January 2025
University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
We present a photocatalytic protocol for the -arylation of carboxylic acids using nickel complexes bearing C8-pyridyl xanthines. Our studies suggest that the underlying mechanism operates independently of external photosensitizers. Stoichiometric experiments and crystallographic studies characterize the catalytically relevant Ni complexes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.
View Article and Find Full Text PDFChemistry
January 2025
Yamaguchi University, Department of Chemistry, 753-8512, Yamaguchi, JAPAN.
We report herein the synthesis of an unprecedented isomer of perylene, dicyclohepta[cd,fg]-as-indacene bearing two phenyl groups (1-Ph) by the nickel-mediated intramolecular homocoupling of a 4,4'-biazulene derivative (2). The X-ray crystallographic analysis and theoretical calculations revealed that 1-Ph adopts a unique helically twisted geometry although the local aromaticity of azulene moieties was preserved. The double covalent linkage of the two azulene skeletons imparts significant orbital interaction, which affords near-infrared (NIR) absorption (up to 1720 nm) and remarkable redox behaviors despite its closed-shell electronic structure.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, Maryland 20877, United States.
We have previously found that the presence of an H-type excitonic dimer formed by two fluorophores covalently bound to an oligonucleotide allows the delivery of such a polymer into live cells without inducing toxicity. We are now using time-resolved fluorescence measurements in solution to understand the molecular dynamics of an antisense probe and how pairing with complementary sense strands of various lengths and degrees of complementarity affects the antisense strand's properties. We report that a DNA strand composed of 30 residues and labeled with an H-type excitonic Cyanine-5/Cyanine-5 dimer shows a predominant 1.
View Article and Find Full Text PDFBiomolecules
November 2024
Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell'Immacolata (IDI-IRCCS), 00167 Rome, Italy.
UVB radiation induces DNA damage generating several thymine photo-adducts (TDPs), which can lead to mutations and cellular transformation. The DNA repair pathways preserve genomic stability by recognizing and removing photodamage. These DNA repair side products may affect cellular processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!