Microparticles are membrane-derived vesicles that are released from cells during activation or cell death. These particles can serve as mediators of intercellular cross-talk and induce a variety of cellular responses. Previous studies have shown that macrophages undergo apoptosis after phagocytosing microparticles. Here, we have addressed the hypothesis that microparticles trigger this process via lipid pathways. In these experiments, microparticles induced apoptosis in primary macrophage cells or cell lines (RAW 264.7 or U937) with up to a 5-fold increase. Preincubation of macrophages with phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)BP) reduced the microparticle-induced apoptosis in a dose-dependent manner. PtdIns(3,5)BP is a specific inhibitor of the acid sphingomyelinase and thus can block the generation of pro-apoptotic ceramides. Similarly, the pre-incubation of macrophages with PtdIns(3,5)BP prevented microparticle-induced upregulation of caspase 8, which is a major target molecule of ceramide action in the apoptosis pathway. PtdIns(3,5)BP, however, had no effect on the spontaneous rate of apoptosis. To evaluate further signaling pathways induced by microparticles, the extracellular signal regulated kinase (ERK-) 1 was investigated. This kinase plays a role in activating phospholipases A2 which cleaves membrane phospholipids into arachidonic acid; microparticles have been suggested to be a preferred substrate for phospholipases A2. As shown in our experiments, microparticles strongly increased the amount of phosphorylated ERK1/2 in RAW 264.7 macrophages in a time-dependent manner, peaking 15 min after co-incubation. Addition of PD98059, a specific inhibitor of ERK1, prevented the increase in apoptosis of RAW 264.7 macrophages. Together, these data suggest that microparticles perturb lipid homeostasis of macrophages and thereby induce apoptosis. These results emphasize the importance of biolipids in the cellular cross-talk of immune cells. Based on the fact that in clinical situations with excessive cell death such as malignancies, autoimmune diseases and following chemotherapies high levels of circulating microparticles might modulate phagocytosing cells, a suppression of the immune response might occur due to loss of macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-006-0622-7 | DOI Listing |
Antioxidants (Basel)
December 2024
Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
The most common bee species used for honey production is (), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD).
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.
The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells.
View Article and Find Full Text PDFMolecules
June 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!