Objective: Echovirus 11 is one of the most frequently isolated enterovirus serotypes, causing a wide range of clinical diseases. We studied the genetic diversity in the 3' end of the VP1 gene of strains from different geographical origin in the world.
Methods: The sequences in the 3' end of the VP1 of 11 Tunisian isolates were determined and aligned with the published sequences to establish a phylogenetic profile.
Results: The grouping of the sequences was similar to what was previously reported by analyzing the whole VP1 gene with 4 genogroups, designated A-D, and 5 lineages in genogroup D. All Tunisian strains belonged to genogroup D, together with other sequences mainly from the USA and Europe. Contrary to the sequences from the USA isolated during the last 3 decades, which mostly belonged to the D4 lineage, those from Tunisia belonged to different lineages within genogroup D according to their isolation date: isolates from the early 1990s belonged to D3, those of the mid 1990s to D4 and the most recent ones to D5.
Conclusion: Our findings further widen the interest of partial sequencing in the VP1 to study the molecular epidemiology of echovirus 11 and indicate that the genetic evolution of circulating strains may differ from one country to another according to the region's epidemiological specificities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000098236 | DOI Listing |
Arch Virol
January 2025
Molecular Bioassay Laboratory, Institute of Advanced Virology, Bio 360 Life Sciences Park, Thonnakkal, Thiruvananthapuram, Kerala, India.
Human bocaviruses (HBoVs) can cause respiratory illness in young children. Although the first HBoV infection in India was reported in 2010, very little information is available about its prevalence, clinical features, or geographic distribution in this country. This study was conducted using 136 respiratory samples from paediatric patients in a tertiary care hospital in Kerala, 21 of which tested positive for HBoV1 and were further characterized through VP1/VP2 gene sequencing.
View Article and Find Full Text PDFRhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck virus hepatitis (DVH), caused by duck hepatitis A virus (DHAV), poses significant challenges to duck farming due to high mortality rates in young ducklings. Despite the widespread use of live attenuated vaccines, the genetic diversity within DHAV strains has diminished their cross-protection efficacy. This study aimed to evaluate the cross-protective efficacy of current DHAV-1 and DHAV-3 vaccines against genetically divergent wild strains.
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Feline calicivirus (FCV) is one of the most widespread pathogens affecting feline animals. Currently, FCV is believed to be divisible into two genotypes, with prevalent strains encompassing both GI and GII. Vaccination is the primary means of preventing FCV infection, yet traditional inactivated or attenuated vaccines theoretically pose potential safety concerns.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.
Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!