A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ex vivo biomechanical properties of the female urethra in a rat model of birth trauma. | LitMetric

Ex vivo biomechanical properties of the female urethra in a rat model of birth trauma.

Am J Physiol Renal Physiol

Depts. of Surgery and Bioengineering, Suite 200, Bridgeside Point, McGowan Institute for Regenerative Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA.

Published: April 2007

Stress urinary incontinence (SUI) is the involuntary release of urine during sudden increases in abdominal pressures. SUI is common in women after vaginal delivery or pelvic trauma and may alter the biomechanical properties of the urethra. Thus we hypothesize that injury due to vaginal distension (VD) decreases urethral basal tone and passive stiffness. This study aimed to assess the biomechanical properties of the urethra after VD in the baseline state, where basal muscle tone and extracellular matrix (ECM) are present, and in the passive state, where inactive muscle and ECM are present. Female rat urethras were isolated in a rat model of acute SUI induced by simulated birth trauma. Our established ex vivo system was utilized, wherein we applied intraluminal static pressures ranging from 0 to 20 mmHg. Outer diameter was measured via a laser micrometer. Measurements were recorded via computer. Urethral thickness was assessed histologically. Stress-strain responses of the urethra were altered by VD. Quantification of biomechanical parameters indicated that VD decreased baseline stiffness. The passive peak incremental elastic modulus of the distal segment in VD urethras was less than for controls (1.84 +/- 0.67 vs. 1.19 +/- 0.70 x 10(6) dyne/cm(2), respectively; P = 0.016). An increase was noted in passive low-pressure compliance values in proximal VD urethras compared with controls (9.44 +/- 2.43 vs. 4.62 +/- 0.60 mmHg(-1), respectively; P = 0.04). Biomechanical analyses suggest that VD alters urethral basal tone, proximal urethral compliance, and distal stiffness. Lack of basal smooth muscle tone, in combination with these changes in the proximal and distal urethra, may contribute to SUI induced by VD.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00292.2006DOI Listing

Publication Analysis

Top Keywords

biomechanical properties
12
rat model
8
birth trauma
8
properties urethra
8
urethral basal
8
basal tone
8
muscle tone
8
sui induced
8
urethra
5
vivo biomechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!