The K+ channel blocker 3,4-diaminopyrindine (DAP) increases diaphragm force, use of which could potentially improve muscle performance during functional neuromuscular stimulation. To determine the extent of hindlimb muscle force augmentation, and delineate whether DAP effects vary in muscles comprised of mainly slow versus fast fibers, rat soleus, extensor digitorum longus (EDL) and diaphragm muscle samples were studied in vitro. DAP increased force of all three muscles, but at high concentrations the force increases were transient and were followed by declines in force below baseline. The maximum DAP-induced twitch force increase was smaller for soleus (38 +/-7%) than both EDL (94+/-12%) (P < 0.05) and diaphragm (93+/-13%) (P < 0.01). During fatigue-inducing 20 Hz stimulation (tested at an intermediate DAP concentration), force of soleus muscle remained significantly elevated by DAP for the entire testing period, force of DAP-treated EDL muscle rapidly declined to values in untreated muscle, and force of DAP-treated diaphragm had an intermediate force-time profile. Muscles varied in extent to which isometric contractile kinetics were altered by DAP. Thus, the K+ channel blocker DAP improves contractile performance of limb muscles, but the profile of improvement is distinct between the soleus and EDL muscles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tnsre.2006.886729 | DOI Listing |
Clin Exp Nephrol
January 2025
Renal Medicine Division, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Office 338A, Atlanta, GA, 30322, USA.
Background: Renal autoregulatory mechanisms modulate renal blood flow. Connecting tubule glomerular feedback (CNTGF) is a vasodilator mechanism in the connecting tubule (CNT), triggered paracrinally when high sodium levels are detected via the epithelial sodium channel (ENaC). The primary activation factor of CNTGF-whether NaCl concentration, independent luminal flow, or the combined total sodium delivery-is still unclear.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
Tetrodotoxin (TTX), a potent Site-1 sodium channel blocker (S1SCB), offers highly effective local anesthetic properties with minimal addiction potential. To fully leverage TTX's capabilities as a local anesthetic, it is crucial to develop a drug delivery system that balances its systemic toxicity with its therapeutic efficacy. Recent studies have shown that peptide mixtures, derived from fragments of Site-1 sodium channel proteins and enhanced with hydrophobic tails (designated MP1 and MP2), can self-assemble into nanostructures that exhibit remarkable sustained-release capabilities for TTX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!