A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchrony dual-optic accommodating intraocular lens. Part 1: optical and biomechanical principles and design considerations. | LitMetric

Purpose: To describe a dual-optic accommodating intraocular lens (IOL) based on theoretical considerations.

Setting: University and independent research group.

Methods: Ray-tracing analysis using optical modeling software (ZEMAXTM, Focus Software Inc., Tucson, Ariz) in a theoretical model eye was used to analyze lens configurations to optimize the accommodative and magnification effects of axial lens displacement. Finite-element modelling using a commercially available PC-based software package (COSMOS DesignSTAR) was applied to design the biomechanical parameters of the inter-optic articulations and optics.

Results: Ray-tracing analysis indicated that a dual-optic design with a high plus-powered front optic coupled to a minus posterior optic produced greater change in conjugation power of the eye compared to a single-optic intraocular lens and that magnification effects were unlikely to account for improved near vision. Finite-element modelling indicated that the 2 optics can be linked by spring-loaded haptics that allow anterior and posterior axial displacement of the front optic in response to changes in ciliary body tone and capsular tension.

Conclusion: A dual-optic design linked by spring haptics increases the accommodative effect of axial optic displacement with minimal magnification effect and has promise for improving the performance of accommodative intraocular lenses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcrs.2006.09.020DOI Listing

Publication Analysis

Top Keywords

intraocular lens
12
dual-optic accommodating
8
accommodating intraocular
8
ray-tracing analysis
8
magnification effects
8
finite-element modelling
8
dual-optic design
8
front optic
8
lens
5
synchrony dual-optic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!