A novel series of cyclic potent, selective, small molecule, thiol-based inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) and the crystal structures of TAFIa inhibitors bound to porcine pancreatic carboxypeptidase B are described. Three series of cyclic arginine and lysine mimetic inhibitors vary significantly in their selectivity against other human basic carboxypeptidases, carboxypeptidase N and carboxypeptidase B. (-)2a displays TAFIa IC50 = 3 nM and 600-fold selectivity against CPN. Inhibition of TAFIa with (rac)2a resulted in dose dependent acceleration of human plasma clot lysis in vitro and was efficacious as an adjunct to tPA in an in vivo rabbit jugular vein thrombolysis model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2006.11.078DOI Listing

Publication Analysis

Top Keywords

inhibitors activated
8
activated thrombin
8
thrombin activatable
8
activatable fibrinolysis
8
fibrinolysis inhibitor
8
inhibitor tafia
8
series cyclic
8
tafia
5
3-mercaptopropionic acids
4
acids efficacious
4

Similar Publications

Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.

View Article and Find Full Text PDF

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

Cellular senescence offers distinct immunological vulnerabilities in cancer.

Trends Cancer

December 2024

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:

Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.

View Article and Find Full Text PDF

Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.

View Article and Find Full Text PDF

Effects of MAO‑B Inhibitors in life quality of Parkinson's disease patients: a Systematic Review and Meta‑Analysis.

Behav Brain Res

December 2024

Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, China. Electronic address:

Introduction: Monoamine oxidase-B (MAO-B) inhibitors, as an add-on therapy to levodopa, are widely used in Parkinson's disease (PD). The effects of MAO-B inhibitors on quality of life remain unclear, and the aim of this systematic review and meta-analysis was to assess the efficacy and safety of MAO-B inhibitors on quality of life in different domains.

Methods: We searched PubMed, Embass, and Cochrane Library databases for randomized controlled trials of PD patients who were administered MAO-B inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!